已知矩形ABCD的面积为4,反比例函数y=x分之k图像的一支

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:50:50
已知矩形ABCD的面积为4,反比例函数y=x分之k图像的一支
如图,已知矩形ABCD的周长为20,四个正方形的面积为100,求矩形ABCD面积

设矩形的长为a宽为b2(a+b)=202(a^2+b^2)=100a+b=10a^2+b^2=50(a+b)^2=100a^2+b^2+2ab=10050+2ab=100ab=25矩形ABCD面积25

已知E.F分别是矩形ABCD边AB和CD的中点,若矩形ABCD与矩形EADF相似,AD=1,求矩形ABCD的面积

 设AB=CD=2X,则AE=X 因为矩形ABCD与矩形EADF相似 所以AB/AD=AD/AE 因为AD=1 所以2X^2=1 所以X=√

已知矩形的对角线长为4,一边长为根号三,矩形面积

根号39对角线的平方等于两边长的平方和可算出另一边长为根号13,矩形面积等于两边长之积

1、如图,矩形ABCD的面积为16.

你说的C1O1...都是平行四边形吧?若是的话,解题如下:(平行四边形的面积公式是底乘高)做出来的每个平行四边形都以AB为底,第一个平行四边形的高为AD的一半,面积为16×0.5;第二个.的一半,面积

如图,已知矩形ABCD中,AB=2,BC=4,把矩形绕着一边旋转一周,围成的几何体的面积为

围成的几何体是一个以做旋转轴的边为高,以另一边为半径的圆柱\x0dAB为半径时:\x0d几何体表面积为:2*π*AB^2+2π*AB*BC=24π\x0d几何体的表面积为:2*π*BC^2+2π*BC

已知矩形ABCD各顶点坐标为A(0,4)B(2,0)C(8,3)D(6.7),直线Y=kx+1平分矩形ABCD的面积,求

k=5/8y=5x/8+1根据矩形的特点,通过矩形形心的直线均平分矩形的面积(这一点很关键).求矩形形心,A点与C点坐标之和除以2,得到形心坐标(4,3.5)带入直线Y=kx+1,得到k=5/8

如图,矩形ABCD被分成六个大小不一的正方形,已知中间一个小正方形的面积为4,其他正方形的边长分别为a,

中间面积为a正方形边长为X,又AB=CD,∴2X+10=3X+2X=8,X+6=14d-中间=14×14-4=192.即最大正方形与最小正方形的面积之差=196-4=192.

如图,已知矩形ABCD的周长为16,四个正方形的面积和为68,求矩形ABCD的面积.

设矩形的长AB为x,则宽AD为(8-x),由题意,得2x2+2(8-x)2=68,2x2+2(64-16x+x2)=68,2x2+128-32x+2x2=68,∴4x2-32x=-60,∴x2-8x=

如图所示,一个矩形ABCD被分为六个大小不一的正方形,已知中间一个小正方形的面积为1,求矩形ABCD的面积

由题意可得:①a+1=b,②b+1=c,③c+1=d,④2a+b=c+d,把前三个式子都化作与a有关的式子,带入到④里,就得到:2a+a+1=c+d=2c+1=2b+3=2a+5,∴a=4S正=(2a

已知矩形ABCD的周长为16,四个正方形的面积为68,求矩形ABCD的面积

设矩形ABCD的长,宽分别为a,b.则有2a+2b=162*a平方+2*b平方=68解得a=3b=5那矩形ABCD的面积为3x5=15

把矩形ABCD对折,折痕为MN,矩形DMNC~矩形ABCD,已知AB=4

设AD=X,则DM=1/2AD=1/2X,∵矩形DMNC∽矩形ABCD,∴DM/DC=DC/AD,又∵DC=AB=4,∴(1/2X)/4=4/X又∵X>0,∴X=4√2即AD=4√2

如图,已知矩形ABCD的面积为48,以此矩形的对称轴为坐标轴建立直角坐标系

因为一次函数y=mx+2(m<0)的图象与x轴y轴分别交点于点E、F,所以F(0,2)设:E(a,0)S(AFE)=(1/8)xS(ABCD)=6(1)E点到直线的距离为:h=((1/4)Xa+2)/

已知矩形ABCD,三角形BDC沿对角线BD对折后BC与AD交点E.若三角形EBD面积为矩形面积的三分之一求角DBC度数

如图,S⊿EDB=S/3  S=S(ABCD),∴S⊿ABE=S/2-S/3=S/6.DE∶EA=2∶1.  DA∶EA=3∶190°-X=2Y.sin(X+Y

已知矩形ABCD对角线长度为x,两个对角线夹角为角a.求矩形面积.

已知矩形ABCD对角线长度为x,两个对角线夹角为角a.求矩形面积S?S=x^2*SIN(a)

如图,已知矩形ABCD的周长为20,四个正方形的面积和为100,求矩形ABCD的面积...

你好正方形的面积和=2AD²+2AB²=100AD²+AB²=50矩形的周正方形的面积和长为20,则AD+AB=10两边平方得AD²+AB²