已知矩阵 满足 BA=B 2E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:19:34
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
因为B为3阶非零矩阵,所以r(B)>=1.(*)又因为t不等于6,所以r(A)=2.由已知BA=0所以A的列向量都是BX=0的解所以r(A)=3-r(A)=3-2=1(**)综上有r(B)=1.
设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.
(B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=(12)-23
BA-B=2E两端同时乘上B的伴随阵,B*B*BA-B*B=2B*由B*B=|B|E|B|A-|B|E=2B*对B*B=|B|E两端同取行列式得到|B|=|B*|所以|B*|A|-|B*|E=2B*从
证明:因为A+B=AB所以(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且(A-E)^-1=B-E.由上知A-E与B-E互逆故有(B-E)(A-E)=E可得BA=A+B从而有AB=BA.
B似乎是A得一个广义逆这么简单得矩阵,你设B=a,b,c,d带入算就可以了B=abcdAB=a+cb+dcdBA=aa+bcc+dAB=BA可以得到a=a+c==>c=0b=b+d==>d=0d=c+
A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A
|A|=3.由ABA*=2BA*+E等式两边右乘A得ABA*A=2BA*A+A.因为A*A=|A|E=3E所以3AB=6B+A所以(3A-6E)B=A所以B=(3A-6E)^-1A3A-6E=0303
ABA=2A+BAAB=2E+BAB-B=2E(A-E)B=2EB=2(A-E)^-1
首先有三个等式(A是可逆的)A^(-1)=A*/|A|AA*=diag(|A|,|A|,|A|,|A|)=|A|E|A||A*|=|A|^n即|A*|=|A|^(n-1)本题n=4由已知ABA^(-1
由于A的前两行成比例,所以无论t为什么值,R(A)一定小于或等于2.故本题的答案为t为任意值.t=6也是可以的.
易知|A|=-2,A可逆.由A*BA=2BA-8I,左乘A,右乘A^-1,得AA*BAA^-1=2ABAA^-1-8AA^-1所以|A|B=2AB-8I所以(A+I)B=4I所以B=4(A+I)^-1
等式A*BA=4BA-2E两边左乘A,右乘A^-1,得|A|B=4AB-2E.代入|A|=2得B=2AB-E所以(2A-E)B=E因为|E-2A|≠0所以2A-E可逆故B=(2A-E)^-1.
没有问题啊,“B是((A-E)/2)的逆”和“B是2((A-E)的逆)”是等价的.注意断句,是“B是2((A-E)的逆)”,不是“B是(2(A-E))的逆”一旦一个矩阵的逆已知了,那么这个矩阵也就唯一
设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca
(A(-1)-I)BA=6AB=6(A(-1)-I)(-1)直接写A=[1/300;01/40;001/7];B=6*inv((inv(A)-eye(3)));
由矩阵迹的性质知tr(AB-BA)=tr(AB)-tr(BA)=0,而tr(E)=n,两者不可能相等