已知矩阵A,满足关系式A^2 2A-3E=0,证明A 4E可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:26:23
已知矩阵A,满足关系式A^2 2A-3E=0,证明A 4E可逆
已知实数a,b满足等式2O12^a=2O13^b下列五个关系式

ln2^a=ln3^baln2=bln3a=b(ln3/ln2)若a>0,a>b>0若a

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

已知矩阵A满足关系式A^2+2A-3E=0,求(A+4E)^-1.

这种问题就可以拼凑的方法解答,一般都可以写成(xA+yB)*(mA+nB)=CE的形式,你就可以用待定系数法求解了,所以这个式子可以变成:(A+4E)*(A-2E)=-5E,下面的结果你应该能够看出来

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

证明:设方阵A满足关系式AA-2A-2E=0,证,A及A+2E均可逆,并求出逆矩阵.

由于A²-2A-2E=A(A-2E)-2E=0所以A(A-2E)=2EA(1/2)(A-2E)=E所以A可逆A逆为(1/2)(A-2E)而由于A²-2A-2E=(A-4E)(A+2

线性代数证明题 已知n阶方阵A满足关系式A的平方-3A-2E=0,证明A是可逆矩阵,并求出其可逆矩阵

A²-3A-2E=0=>A(A-3E)=2E=>A[(A-3E)/2]=E所以A是可逆矩阵,且其逆矩阵为(A-3E)/2

已知矩阵A和B满足关系式AB=A+2B,其中A=4 2 3,求B 1 1 0 -1 2 3

因为AB=A+2B所以(A-2E)B=A(A-2E,A)=423100110010-123001r1-4r2,r3+r20-231-40110010033011r3*(1/3),r1+2r3,r2-r

如果a、b满足关系式a+b=4a

已知等式a+b=4a+2b-5,整理得:a-4a+4+b-2b+1=(a-2)2+(b-1)2=0,可得a=4,b=1,则a+2b=4+2=6.

已知a、b、c是△ABC的三边长,且满足关系式c

∵c2−a2−b2+|a-b|=0,∴c2-a2-b2=0,且a-b=0,∴c2=a2+b2,且a=b,则△ABC为等腰直角三角形.故答案为:等腰直角三角形

已知实数a,b满足不等式a^1/2=b^1/2,下列五个关系式

a,b∈R,a^1/2→a>0,b^1/2→b>0,∵a^1/2=b^1/2∴a=b⑤

已知A,B为3阶矩阵,且满足关系式:2A^-1B=B-4E,其中E是3阶单位矩阵

等式2A^-1B=B-4E两边左乘A得2B=AB-4A所以(A-2E)(B-4E)=8E所以A-2E可逆,且(A-2E)^-1=(1/8)(B-4E).因为2B=AB-4A所以A(B-4E)=2B(B

已知n阶对称矩阵A(未必可逆)满足A^=2A,证明A-I是正交矩阵

A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握

已知三阶矩阵A和B满足A+B=AB,求A

由A+B=AB,得(A-E)(B-E)=E所以A-E=(B-E)^-1=0-30200001的逆矩阵=01/20-1/300001所以A=11/20-1/310002

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

已知△ABC三边a,b,c满足关系式.

先看式子分解因式(a-c)(a+c)+3b(a-c)=0(a-c)(a+c+3b)=0所以只可能a=c,a+c+3b肯定大于零所以就是等腰三角形再问:(a-c)(a+c+3b)=0这步没懂,是怎么回事

【线性代数】已知矩阵X与A满足关系式,AX=A+X,求X

AX=A+X(A-E)X=A|021||332|=0+4+6-3-0-6=1≠0|121|∴X=(A-E)^(-1)A[021121][332342]→[121122]----------------

设矩阵A,B满足关系式AB=2(A+B),其中A={3 0 1,1 1 0,0 1 4},求矩阵B

因为AB=A+2B所以(A-2E)B=A(A-E,A)=1013011-10110012014r2-r11013010-1-1-21-1012014r3+r2,r2*(-1)1013010112-11

已知:线段a、b、c满足关系式ab=bc

∵ab=bc,∴b2=ac=42=16.故答案是:16.