已知等比数列an,S3,S9,S6成等差数列,a2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:37:45
q=1时显然不成立;S3,S9,S6成等差数列,所以有:2S9=S3+S6S9-S6+S9-S3=0即:a7+a8+a9+a4+a5+a6+a7+a8+a9=0a4+a5+a6=-2(a7+a8+a9
首项a2S9=2a(q^9-1)/(q-1)S3+S6=a(a^3-1)/(q-1)+a(a^6-1)/(q-1)2S9=S3+S6显然a不等于02(q^9-1)=a^3-1+q^6-12q^9=q^
∵正项等比数列{an}的前n项和为Sn,∴S3,S6-S3,S9-S6成等比数列即(S6-S3)2=S3•(S9-S6),∴(S6-3)2=3×12解得S6=9或-3(正项等比数列可知-3舍去),故答
开始就是分类讨论:1q不为1时,,..(不详细写了)2q=1时an=a1S3,S9,S6成等差数列2S9=S3+S618a1=3a1+6a1a1=0由于等比数列的各项均不为0(0作为除数没有意义),因
2s9=s3+s62a1(1-q^9)/(1-q)=a1(1-q^3)/(1-q)+a1(1-q^6)/(1-q)2(1-q^9)=(1-q^3)+(1-q^6)2-2q^9=1-q^3+1-q^62
S9-S3=a9+a8+a7+a6+a5+a4S6-S9=-a9-a8-a7因S3,S9,S6,成等差数列则a9+a8+a7+a6+a5+a4=-a9-a8-a7a6+a5+a4=-2a9-2a8-2
因为S3.S9.S6成等差数列2S9=S3+S62a1(1-q^8)/(1-q)=a1(1-q^2)/(1-q)+a1(1-q^5)/(1-q)2(1-q^8)=2-q^2-q^52q^8=q^2+q
首项a2S9=2a(q^9-1)/(q-1)S3+S6=a(a^3-1)/(q-1)+a(a^6-1)/(q-1)2S9=S3+S6显然a不等于02(q^9-1)=a^3-1+q^6-12q^9=q^
sn=a1(1-q^n)/(1-q)S6:S3=(1-q^6)/(1-q^3)=(1+q^3)(1-q^3)/(1-q^3)=1+q^3=1:2所以q^3=-0.5S9:S3=(1-q^9)/(1-q
2S9=S6+S3Sn=a1(1-q^n)/(1-q)2(1-q^9)=(1-q^6)+(1-q^3)2q^9=q^6+q^32q^7=q^4+q(1)a8=a1*q^7a2=q1*qa5=a1*q^
S3,S9,S6成等差数列.s3+s6=2s9whenq=1,a2,a8,a5成等差数列.whenq不等于1;左=a1(1-q^3)/(1-q)+a1(1-q^6)/(1-q)=2a1(1-q^9)/
(Ⅰ)当q=1时,S3=3a1,S9=9a1,S6=6a1,∵2S9≠S3+S6,∴S3,S9,S6不成等差数列,与已知矛盾,∴q≠1.(2分)由2S9=S3+S6得:2•a1(1−q9)1−q=a1
设等比数列首项A1,公比是Q(Q1)S3=A1(1+Q+Q^2+Q^3)=A1(1-Q^3)/(1-Q)S9=A1(1-Q^9)/(1-Q)S6=A1(1-Q^6)/(1-Q)S3,S9,S6成等差数
由S3,S9,S6成等差数列得:2s9=s3+s6.可得q≠1,所以有2×a1(1−q9) 1−q=a1(1−q3)1−q+a1(1−q6)1−q⇒2q9=q3+q6⇒2(q3)
因为S3.S9.S6成等差数列2S9=S3+S62a1(1-q^8)/(1-q)=a1(1-q^2)/(1-q)+a1(1-q^5)/(1-q)2(1-q^8)=2-q^2-q^52q^8=q^2+q
由已知,可得S3=A1(1-q^3)/(1-q);S9=A1(1-q^9)/(1-q);S6=A1(1-q^6)/(1-q);S3,S9,S6成等差数列,所以S3+S6=2S9,化简,得q^3+q^6
S3+S6=2S9S3+q^3S3+S3=2(1+q^3+q^6)S32+q^3=2+2q^3+2q^62q^6=-q^3q^3=-1/2a2(1+q^3)=1/2a22a8=2a2*q^6=1/2a
由题意,S9-S3=S6-S9而S9-S3=A4+...+A9S6-S9=-(A7+A8+A9)而(A4+A5+A6)+2(A7+A8+A9)=0A3(Q+Q²+Q²)+2A6(Q
1.A1q^3+A1q^6=2A1q^9.解之得q^3=12.当q=1时A2=A1A5=A1A8=A1所以A2+A5=2A8所以a2,a8,a5成等差数列
1)因为an=a*q;Sn=a*(1-q^n)/(1-q);S3=a*(1-q^3)/(1-q);S6=a*(1-q^6)/(1-q);S9=a*(1-q^9)/(1-q);2*S9=S3+S6;约去