已知等比数列an的公比q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:07:56
已知等比数列an的公比q
第一题:设等比数列{an}的公比q

第二题:1/(X-1)=1X>=2所以不等式解集为X=2第一题公比q若为正数的话,哪么应该大于1,因为要是q

已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.

(1)由题意可知,2a3=a1+a2,即2aq2-q-1=0,∴q=1或q=-12;(II)q=1时,Sn=2n+n(n−1)2=n(n+3)2,∵n≥2,∴Sn-bn=Sn-1=(n−1)(n+2)

已知等比数列{an}的公比q=-12.

(1)由a3=14=a1q2,以及q=-12可得a1=1.∴数列{an}的前n项和Sn=1×[1−(−12)n]1+12=2−2•(−12)n3.(2)证明:对任意k∈N+,2ak+2-(ak+ak+

已知等比数列{an}的公比q

我猜你的题目给出的条件是a(n+2)=a(n+1)+2an,就像楼上所列正解如下a3=a2+2a1=2a1+1a4=a3+2a2=2a1+1+2=2a1+3又an为等比数列,a2=a1*q,a3=a1

已知等比数列{an}的公比q≠+ -1,且am,an,ap成等比数列,求证m,n,p成等差数列

因为am,an,ap成等比数列,则由等比中项,有:(an)^2=am*ap(a1*q^(n-1))^2=a1*q^(m-1)*a1*q^(p-1)(这是把通项公式代入)则消去a1,(q^(n-1))^

设等比数列an的公比q

S4=a1(1-q^4)/(1-q)=5a1(1-q^2)/(1-q)1+q^2=5q^2=4因为q

已知等比数列的公比q=4,前3项和为21,求通项公式an

设首项为X则有X+4X+16X=21X=1通项公式an=4的(n-1)幂

已知等比数列{an}的公比q=3,前3项和S3为13/3

/>(1)S3=a1+a2+a3=a1(1+q+q²)=a1(1+3+3²)=13a1=13/3a1=1/3an=a1q^(n-1)=(1/3)×3^(n-1)=3^(n-2)数列

已知等比数列{an},公比为q(0

因为a2+a5=9/4,a3.a4=1/2所以a2(1+q^3)=9/4,a2^2.q^3=1/2(计算过程把q^3看作整体来解)即a2=2,q=1/2所以an=4.(1/2)^(n-1)

已知等比数列{an},公比为q(-1

(1)a3*a4=a2*a5=1/2a2+a5=9/4-1

设等比数列{an}的公比q

首先得求的a1a4=5s2...a1q^3=5(a1+a1q)又.a3=a1q^2=2...所以.2q=5(a1+a1q)得.a1=(2q)/(5(1+q))又因为.a3=a1q^2=2得.q=1.2

设等比数列 {an}的公比q

等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3-1)=a1*q^2S4=5S2=>a1(1-q^4)/(1-q)=5*a1(1-q^2)/(1-q)

已知an是公差为d的等差数列,bn是公比为q的等比数列

6m+7=3k+16(m+1)=3kk=2m+2q=bn/bn-1=an+1/an-1an+1-(an-1)=2d两个联立an-1=1+2d/q是常数所以an是常数列bn也是常数列,且bn=1

15.设等比数列{an}的公比q

S4=a1(1-q4)/(1-q),S2=a1(1-q2)/(1-q),已知S4=5S2,则a1(1-q4)/(1-q)=5a1(1-q2)/(1-q),即q=±2,又公比q

等比数列{an}的首项为a1,公比为q,

(1)S1→3=a1(1+q+q^2)=a1*(1-q^3)/(1-q)S4→6=a4(1+q+q^2)=a1*(1-q^3)/(1-q)*q^3S7→9=a7(1+q+q^2)=a1*(1-q^3)

已知实数列an为等比数列,公比为q

设a(n)=a1*q^(n-1),则s(n)=a1(1-q^n)/(1-q).求出a(n-1)、s(n-1)、a(n+1)、s(n+1)并代入原不等式化简得:q^(n-2)*(1-q)0.所以q^(n

已知等比数列an的公比大于1,

等比数列an的公比大于1,设公比为q,且q>1a1a3=6a2,a1*a2*q=6a2a1*q=6a2=6a1.a2.a3-8成等差,2a2=a1+a3-82*6=6/q+6*q-820q=6+6q^

已知{an}是公差为d的等差数列,{bn}是公比为q的等比数列

(1).由a(m)+a(m+1)=a(k)知道3m+3(m+1)+1=3k+1,整理后有k-2m=4/3,而m,k均是N+,则k-2m也是整数,故而不存在m,k∈N+,使a(m)+a(m+1)=a(k

1.设等比数列{an}的公比q

S4=a1(1-q4)/(1-q),S2=a1(1-q2)/(1-q),已知S4=5S2,则a1(1-q4)/(1-q)=5a1(1-q2)/(1-q),即q=±2,又公比q