已知等比数列an的首项为a1,公比为q,若n为偶数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:48:48
已知等比数列an的首项为a1,公比为q,若n为偶数
已知等差数列[an]的公差不为零,a1=25,且a1,a11,a13成等比数列.⑴求[an]的通项公式;⑵求a1+a4+

a1=25、a11=25+10d、a13=25+12d则:a11²=(a1)×(a13)(25+10d)²=25×(25+12d)得:d=-2则:a(n)=-2n+27数列a1、a

已知{an}满足a(n+1)=3an+1 a1=1/2 求证{an+1/2}为等比数列,{an}的通项公式

用数学归纳法a1=1/2a2=3a1+1=5/2a3=3a2+1=17/2a1+1/2=1a2+1/2=3a3+1/2=9因此先猜想a[n+1]+1/2=3(an+1/2)已证n=2,3时成立假设n=

已知等差数列{an}的首项a1=1,公差d>0,{bn}为等比数列,且a2=b2,a5=b3,a14=b4,求{an},

因为等差数列{an}的首项a1=1所以a2=a1+d=1+d,a5=a1+4d=1+4d,a14=a1+13d=1+13d因为{bn}为等比数列所以(b3)^2=b2*b4又a2=b2,a5=b3,a

等比数列{an}的首项a1=1,公比为q且满足q的绝对值

S1=a1(1-q)/(1-q),S2=a1(1-q^2)/(1-q),...,Sn=a1(1-q^n)/(1-q).S1+S2+...+Sn=[a1/(1-q)]*[1-q+1-q^2+...+1-

已知数列an的前n项和为Sn,Sn=三分之一×【a1-1】求a1,a2 .求证数列an是等比数列

题目是这样的吗?已知数列{an}的前n项和为sn,sn=1/3(an-1)(n属于N+)(1)求a1、a2(2)求证数列{an}是等比数列(1):sn=1/3(an-1)n=1s1=a1=1/3(a1

已知{an}是公差不为零的等差数列,a1=1 a1,a3,a9成等比数列,求{an}的通项公式

设公差为d则a3=a1+2d=1+2da9=a1+8d=1+8d因为a1,a3,a9成等比数列所以a3²=a1*a9=a9∴(1+2d)²=1+8d∴d=0或者d=1又∵d≠0,∴

已知等比数列{an}共有m项(m大于等于3),且各项均为正数,a1=1,a1+a2+a3=7,求数列{an}的...

a1=1,a2=q,a3=q^2,则a1+a2+a3=1+q+q^2=7,即q^2+q-6=0,解得q=2或q=-3(舍去),所以q=2,所以an=a1×q^(n-1)=2^(n-1)

已知{an}是公差不为0的等差数列,a1=1,且a1,a3,a9成等比数列,求数列{2^an}的前n项和Sn

设公差为d,则d≠0a1,a3,a9成等比数列,则a3²=a1·a9(a1+2d)²=a1(a1+8d)a1=1代入,整理,得d²-a1d=0d(d-a1)=0d≠0,因

已知等比数列{an}的首项为a1,公比为q,若n为偶数,则第n/2项是

a(n/2)=a1*q^(n/2-1)再问:我开始时也是这样认为的,但是我们同学写的貌似是a1*q^(n-1+n/2)再答:就是套等比数列的通项公式:an=a1*q^(n-1)

等比数列{an}的首项为a1,公比为q,

(1)S1→3=a1(1+q+q^2)=a1*(1-q^3)/(1-q)S4→6=a4(1+q+q^2)=a1*(1-q^3)/(1-q)*q^3S7→9=a7(1+q+q^2)=a1*(1-q^3)

已知一个等比数列{an}的首项为a1,公比为q,取出数列{an}中的所有奇数项,组成一个新的数列,这个新数列是

是等比数列.奇数项a1,a3,a5,.,公比为q².每隔10项取出一项也等比,a1,a11,a21,...,公比为q^10一般地,每隔m项取出一项成等比(m∈N*),即a1,a(m+1),a

已知公差不为0的等差数列{an}的首项a1为a,且1\a1,1\a2,1\a4成等比数列

再问:我本来也这么考虑的,但是如果a<1怎么办?再答:首先题目有没有与我理解得一样?再答:A小于l的情况分析起来很简单,但不可以小于零。再问:题目上说a属于R,麻烦你在考虑下。描述完整我就采纳你的答案

设等比数列{an}的前n项和为Sn,已知a1=2011,且an+2an+1+an+2=0(N∈N*),则S2012?

设公比是qan+2an+1+an+2=0∴an+2an*q+an*q²=0∴an(1+2q+q²)=0∵an≠0∴1+2q+q²=0∴(q+1)²=0∴q=-1

已知数列{an}满足a1=1,an+1=2an+1 1)求证:数列{an+1}为等比数列; 2) 求{an}的通项an

a(n+1)+1=2an+2=2(an+1)[a(n+1)+1]/(an+1)=2所以an+1是等比数列[a(n+1)+1]/(an+1)=2则q=2所以an+1=(a1+1)*2^(n-1)=2^n

已知公差不为0的等差数列{an}的首项a1=a(a∈R),设数列{an}的前n项和为Sn,且a1、a2、a4恰为等比数列

(1)设等差数列{an}的公差为d,由a22=a1a4,…(1分)得(a1+d)2=a1(a1+3d)…(2分)∵d≠0,∴d=a,∴an=na1,Sn=an(n+1)2.(2)∵1Sn=2a(1n−

已知公差不为0的等差数列{an}的首项a1(a1∈R),且1a1,1a2,1a4成等比数列.

(Ⅰ)设等差数列{an}的公差为d,由题意可知(1a2)2=1a1×1a4,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,所以d=a1,故an=nd=na1;(Ⅱ)记Tn=1a2

已知数列{an},若a1,a2-a1,a3-a2,a4-a3,an-an-1是公比为2的等比数列,则{an}的前n项和s

因为数列a1,a2-a1,a3-a2,a4-a3.是首相为1公比为2的等比数列则an所以a1,a2-a1,a3-a2,a4-a3.an-a(n-1)的前项和为a1+a2-a1+a3-a2+a4-a3+

已知数列{an}是首项为2的等差数列,a1,a2,a4成等比数列.求数列{an}的通项公式

a2=a1+da4=a1+3da2^2=a1a4a2^2=(a1+d)^2=a1^2+2a1d+d^2a1a4=a1(a1+3d)=a1^2+3a1da1^2+2a1d+d^2=a1^2+3a1da1

已知数列an首项为a1=1/2,公比为q=1/2的等比数列,设bn=3log1/2(an)

1)易得an=(1/2)^nbn=3log1/2(an)=3log1/2(1/2)^n=3n2)Cn=an×bn=3n*(1/2)^nTn=3*(1/2)+3*2(1/2)^2+...+3n*(1/2