已知线性方程组AX=b的两个解,求a11 a12 a13
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:31:11
选A!非齐次线性方程组Ax=b的通解结构:γ=γ0+η,其中γ0是其一个特解,η是Ax=0的通解.A中,1/2(β1+β2)仍然是Ax=b的一个解,即特解γ0,C1α1+C2(α1+α2)=(C1+C
由已知β1-β2是AX=0的非零解而导出组AX=0的基础解系只有一个向量所以β1-β2是AX=0的基础解系所以方程组的通解为β1+k(β1-β2).
AX=B有解的充要条件是r(A,B)=r(A)
选B.因为A中的三个向量a1-2a2+a3,-2a1+a2+a3,a1+a2-2a3线性相关.(这个相关性证明可由行列式1-21-21111-2的值为0得出.)
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
这题选DA、A(a1+a2+a3)=Aa1+Aa2+Aa3=3B≠B,错B、A(a1+a2-2a3)=Aa1+Aa2-2Aa3=B+B-2B=0≠B,错C、A(1/3a1+a2+a3)=1/3Aa1+
你的也是对的,有一个非齐次通解就可以
因为r(A)=2所以AX=0的基础解系含3-r(A)=1个解向量故2x1-(x2+x3)=2(1,2,3)^T-(2,3,4)^T=(0,1,2)^T是AX=0的基础解系.而x1=[1,2,3]^T是
首先,因为b1,b2为非齐次线性方程组AX=B两个解,即有Abi=B,i=1,2所以A[1/2(b1+b2)]=(1/2)(Ab1+Ab2)=(1/2)(2B)=B.所以1/2(b1+b2)也是AX=
/>因为AX=b的通解等于AX=0的通解加上AX=b的一个特(1)对于选项A.由于β1、β2是非齐次线性方程组AX=b的两个不同的解,因此β1-β22是AX=0的解.故A错误.(2)对于选项B.由于α
从题目看,应该是个选择题a+k1c+k2d是AX=B的通解,但还有其他的表示方式.比如(a+b)/2+k1c+k2d也是AX=B的通解.你应该把所有选项贴出来!
1.你这个是选择题?1/2(β1+β2)是Ax=b的解,这个没问题非齐次线性方程组的解的线性组合仍是其解的充分必要条件是组合系数的和等于1.但α1,β1-β2是导出组的基础解系?没法确定线性无关K1α
尽管β1—β2是AX=0的解但α1,β1—β2可能线性相关,或者说它不构成基础解系
有个知识点需要记住:非齐次线性方程组的解的线性组合仍是其解的充分必要条件是组合系数之和等于1.A.组合系数之和为1+1=2,不对B.1-1=0不对C.3-2=1正确D.2-3=-1不对.相应还有:非齐
k(a1-a2)+a1再问:(A)ka1;(B)ka2;(C)k(a1-a2);(D)k(a1+a2)这几个选项选c吗?再答:嗯
a=3时有解;2) 1 2 -3 1 &n
有2个解说明A的rank=0,所以\lambda-1,a=-2,通解是(1/2,-1/2,1)'+c(1,0,1)','代表转置.再问:为什么两个不同的解,A的秩就为零?再答:Ax_1=bAx_2=b
-r(A)=r(A)-r(A)
【分析】非齐次线性方程组Ax=b的解的结构ξ(特解)+k1a1+k2a2+…+krar(基础解系)写出通解秩A=(2)基础解系解向量有3-2=1个则n1-n2是基础解系Ax=b的解为n1+k(n1-n
四元非齐次线性方程组Ax=b的秩R(A)=2,所以通解有4-2=2个解向量,方程组有解a,b,c,d所以A(a+b)=2b,A(a-2c)=-b,A(a+2d)=3b那么显然A(a+b+2a-4c)=