已知菱行求证菱行ABCD对角线AC,BD的交点o即为等边三角形aef的外心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 06:20:07
EO=FO∠EOB=∠FODBO=DO所以△EOB≌△FOD(SAS)所以∠EBO=∠FDO,EB=FD所以EB平行于FD所以EBCD是平行四边形同理EO=FO∠EOB=∠FOBBO=BO△EBO≌△
矩形的对角线相交于一点O,根据矩形特点,有OA=OB=OC=OD,那么,根据圆形的特征,四条线段共点于O,这样四条线段均为以O为圆心,此线段长为半径的圆四条半径,故A、B、C、D四点共圆.
AB1⊥A1BAB1⊥BC所以A1B1⊥A1C同理AD1⊥A1C所以A1C⊥面AB1D1
第一题不知道你说什麽(什麽叫“……连先三等分次”)第二道题是∵b向量=BC向量=AD向量∴a向量-b向量=DB向量又∵c向量+DB向量=OB向量∴原题得证
图呢再问:不敢拍有声音再问: 再答:条件发错了重发。再问: 再答:条件再问:
要证A1C⊥面AB1D1只需证A1C⊥AB1,A1C⊥AD1即可证明:连接A1B,A1D∵是正方体∴BC⊥面ABB1A1∴BC⊥AB1∵AB1⊥A1B(对角线互相垂直)∴AB1⊥面A1BC∴AB1⊥A
证明:∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.
反证法:假设两条直线共面.可推出A,B,C,D共面,则ABCD不是空间四边形.与体设矛盾.故AC,BD异面.
正方形可知AB=BC=CD=AD∠BAC=∠DAC=∠BCA=∠DCA=45°又有题知AE=CF有边角边SAS可知△ABE=△BCF=△CFD=△AED所以BF=FD=DE=EB四条边都相等的四边形为
∵四边形ABCD是正方形∴AD=BC∵AC是对角线∴∠DAC等于∠ACB∵AE=CF∴△ADE≌BFC∴BF=ED以此类推证出EB=BF=DF=ED∴四边形BFDE是菱形
根据三角形两边之和大于边可得AO+BO>ABBO+CO>BCCO+DO>CDDO+AO>AD四个式子相加可得:2(AC+BD)>AB+BC+CD+AD即:AC+BD>1/2(AB+BC+CD+DA)所
根据题意⊿ABE∽⊿ACD,AB:AC=BE:CDAB×CD=AC×BE,⊿ABC∽⊿AED,AC:AD=BC:DEAD×BC=ED×AC
因为是正方形所以∠DCA=∠BCA=45°,BC=DC在三角形DCE和三角形BCE中,CE是公共边所以ΔDCE≌ΔBCE(SAS)所以BE=DE
证明:连接BD交AC于O点;∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OE=OF,又∵OB=OD,∴四边形EBFD为平行四边形.不懂可追问,有帮助请采纳,谢谢!再问:求证A
因为对角线CA⊥AB,BD⊥CD,所以三角形CDA和三角形CDB为直角三角形CD为两个三角形的斜边因为直角三角形的顶点到斜边中点的距离相等,设中点为O则OC=OA=OB=OD所以A、B、C、D四点在以
证明:连结BD,交AC于点0∵四边形ABCD是平行四边形∴OA=OCOB=OD∵AE=CF∴OA-AE=OC-CF即OE=OF∴四边形BFDE是平行四边形(我想应该是这样吧?)
证明:(1)在平行四边形ABCD中,OA=OC∵EA=EC∴BE⊥AC∴平行四边形ABCD是菱形(2)∵∠EAD+∠AED=∠ADO∠DAO=∠EAD+∠AED∴∠ADO=∠DAO∴OA=OD∴AC=
拜托哪里来的F
提示连接OE,则OE=1/2▪AC,OE=1/2▪BD,∴AC=BD,∴□ABCD是矩形再问:把这题完整的过程写一下好吗?谢谢。再答:连接OE,∵平行四边形ABCD对角线AC,
证明:(1)连接A1C1,设A1C1∩B1D1=O1连接AO1,∵ABCD-A1B1C1D1是正方体∴A1ACC1是平行四边形∴A1C1∥AC且A1C1=AC又O1,O分别是A1C1,AC的中点,∴O