已知过抛物线y²=4x的顶点O作互相垂直的弦OM,ON,则点M的坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:10:25
1)y=ax^2+bx=a(x+b/2a)^2-b^2/4a,即顶点为(-b/2a,-b^2/4a);顶点在直线Y=(-1/2)X上,则-b^2/4a=(-1/2)*(-b/2a),b=0或-1(1)
∵OB=4,∴B(4,0)或B(-4,0).当B(4,0)时,且抛物线过原点O,∴抛物线的对称轴为x=2.∵抛物线的顶点A在直线y=2x上∴y=2×2=4,∴A(2,4).设y=a(x-2)2+4,由
(1)y=x/2-1x=0,y=-1,C(0,-1)A(2,0)CA斜率k=(-1-0)/(0-2)=1/2AB斜率k'=(2-0)/(1-2)=-1kk'=-1,∠CAB=90˚(2)抛物
和x轴的交点为(0,0)和(4,0).则顶点的x值为2.因为顶点在y=2x上.则顶点为(2,4).可设抛物线为y=k(x-2)^2+4.又因为过原点.则k=-1.则抛物线为y=-x^2+4x再问:为什
原题应该:已知抛物线y=ax^2+bx(a≠0)的顶点在直线y=-(1/2)x-1上,且过点A(4,0).(1).求这个抛物线的解析式;(2).设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形O
亲,少了点东西,M是顶点?再问:M在直线y=5/4上再答:1、过原点,则c=0(1,1)为顶点,则有-b/(2a)=1,将(1,1)代入y=ax^2+bx得a+b=1联立求解,a=-1,b=2y=-x
由题意,F(1,0)设直线:x=y+1y²=4xx=y+1y²-4y-4=0设A(x1,y1)B(x2,y2)y1+y2=4,y1y2=-4由三角形面积的矩阵公式S△ABC=1/2
以PM为底边的等腰三角形PFM所以,FM=FP可以得到P点的纵坐标y=1/4由抛物线的对称性可知,它与x轴交于(0,0)、(2,0)两点、所以a=-1b=2c=0y=-x^2+2x所以y=1/4时x=
(1)∵抛物线过点(0,0)、(4,0),∴抛物线的对称轴为直线x=2.∵顶点在直线y=-12x-1上,∴顶点坐标为(2,-2).故设抛物线解析式为y=a(x-2)2-2,∵过点(0,0),∴a=12
(1)设过点(-1,0)直线y=k(x+1),k显然等同于向量a的纵坐标了.联立直线与抛物线得k^2*x^2+(2k^2-4)x+k^2=0,向量OA•向量OB=x1x2+y1y2=x1x
抛物线标准形式y^2=2px①求出p=2;焦点坐标为(p/2,0),求出焦点P的坐标为(1,0).直线斜率为±1,因为为对称图形,所以可以设斜率为1,因此直线AB的方程为y=x-1②.接方程组{①,②
我不知道A点是什么,我当A点是(4,0)来说.对于第二问,由于知道了抛物线方程,因此可知P的坐标.下面分情况讨论:1、如果OP//AB,可以先算出OP的斜率k,再由直线点斜式方程y=k(x-4),与抛
根据定点坐标公式,定点横坐标应该等于x=-b/2ab为一次项系数;a为二次项系数所以可得,x=-4/-2=2又知定点在直线上,所以将此横坐标带入直线方程,解出纵坐标y=-9所以,顶点坐标为(2,-9)
y^2=4x,焦点F(1,0)y^2=4x的内接三角形OAB的一个顶点O在原点,三边上的高都过焦点,则AB⊥X轴,设yA>0,yB0,则xA=xB=a^2/4A(a^2/4,a),B(a^2/4,-a
1、(y-0)/(x-2)的意思是,在抛物线(只有1/4)中取一点,求两点(x,y)、(2,0)的斜率取值范围.1)画图可知:斜率k0时的最小值:由于抛物线有渐近线y=x;当x=y=正无穷时,k取最小
抛物线方程y=x²-4x+a=(x-2)^2-4+a可知顶点在x=2处,在直线y=-4x-1上所以直线y=-4*2-1=-9所以顶点为(2,-9)解毕!~
抛物线的顶点坐标A(X,Y)X=-b/2a=-(-4)/2=2A在y=2x-1上,y=2*2-1=3∴顶点坐标A(2,3)
1、过原点,则c=0(1,1)为顶点,则有-b/(2a)=1,将(1,1)代入y=ax^2+bx得a+b=1联立求解,a=-1,b=2y=-x^2+2x2、P(x,y),由于PM垂直于y=5/4,所以
a=3/16y=3(x+4)^2/16显然三角形AOB是直角三角形,直角边为AO和BO抛物线顶点已经确定了是(-4,0)只需求B的纵坐标即可,将x=0带入抛物线解析式得y=16a由于面积是6故16a*