已知连续性随机变量x服从区间[a,b]上的均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:48:46
已知连续性随机变量x服从区间[a,b]上的均匀分布
概率论:设随机变量X服从区间[0,5]上的均匀分布,Y服从参数为3的指数分布,且X与Y相互独立,求E(XY)

由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2  由Y服从参数为3的指数分布,得出E(Y)=3  由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意

已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

已知随机变量X与Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=

均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1

已知随机变量X与Y相互独立,且它们分别在区间【-1,3』和【2,4】上服从均匀分布,则E(XY)=

相互独立的随机变量,有E(XY)=E(X)E(Y)E(X)=1E(Y)=3所求=3

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X服从区间(0,2)上的均匀分布试求X的分布函数Fx(X)

/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g

概率统计:已知随机变量X服从自由度为3的t分布,则X的平方服从什么分布?

楼上真是扯淡啊.明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所

随机变量X服从区间[0,2π]上的均匀分布,求数学期望E(sinx)

概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.

请问随机变量X服从正态分布

就是满足正态分布的性质.

已知随机变量X服从在区间(0,1)上的均匀分布,Y=2X+1,求Y的概率密度函数.

由题,设Y的概率密度为fY(y),分布函数为FY(y),由于X在区间(0,1)上的均匀分布∴Y=2X+1∈(1,3)∴对于任意的y∈(1,3),有FY(y)=P{Y≤y}=P{2X+1≤y}=P{X≤