已知随机变量x服从二项分别x~b(6,1 3),则P(X=2)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:12:08
已知随机变量x服从二项分别x~b(6,1 3),则P(X=2)=
已知随机变量X,Y分别服从N(1,3^2),N(0,4^2),ρxy=-1/2,设Z=X/3+Y/2

对,是协相关方差6分之2是X的系数与Y的系数然后乘以2

已知随机变量X,Y分别服从N(1,9),N(0,16),它们的相关系数ρxy,=-1/2,Z=X/3+Y/2,试求:

因为书上定义:D(ax+by)=a^2D(X)+b^2D(Y)+2*abCov(X,Y)Cov(X,Y)为协方差Cov(X,Y)=E(XY)-E(X)E(Y)只有当X,Y不相关时Cov(X,Y)等于零

概率统计问题,9、已知随机变量X,Y分别服从正态分布N(0,1)和N(2,4^2),且X与Y的相关系数为

再问:能不能把计算过程写得更详细一点?再问:cov(X,Z)是怎么等于3cov(X,X)的?再答:

已知随机变量X与Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=

均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1

已知随机变量X与Y相互独立,且它们分别在区间【-1,3』和【2,4】上服从均匀分布,则E(XY)=

相互独立的随机变量,有E(XY)=E(X)E(Y)E(X)=1E(Y)=3所求=3

已知随机变量x和y相互独立且均服从参数λ=2的指数分布,问,随机变量...

x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)

《概率论题目求解》已知随机变量X服从自由度为n的t分布,则随机变量X方的服从的分布是?...

明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所以平方后,分子是

已知随机变量X服从标准正态分布,求X的平方的期望值和方差

是要积分么?标准正态分布的期望是0,方差是1如果是要积分的话你画一个积分符号然后等于0就可以了

已知随机变量X服从正态分布,求Y=e^X的概率密度

设Y的分布函数为F(y),X的密度函数为g(x)则F(y)=P(Y

1、已知随机变量X服从[2,6]上的均匀分布,则P{3

所以P{3再问:答案是EX吗?再答:嗯啊,第二个题目再问:第一题呢谢谢再答:P{3

已知随机变量X服从正态分布N(3,a^2),则P(X

这里μ=3,由正态分布本身的性质P(X

如果二独立随机变量X和Y之和X+Y与X和Y服从同一名称的概率分布,则X和Y都服从()

(1)若X~P(),P(),则X+Y~P()证明:利用卷积公式来证明设Z=X+Y则P(Z=m)=P(X+Y=m)=(卷积公式)=(因为X与Y独立时,联合分布=边际分布之积)=(此处忘记写上下标了)==

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

设随机变量X服从正态分布N(μ,σ^2),已知P(X

P(x0)=0898f就是那个圈加一竖(ps:莫非也是seu的孩纸==)

概率统计:已知随机变量X服从自由度为3的t分布,则X的平方服从什么分布?

楼上真是扯淡啊.明显是F分布,而且是F(1,3).关于F分布你百度百科查一下就知道了.而t分布的话,比如自由度是3,他的分子是正态分布,分母是根号下的Y除以自由度3,其中Y是服从卡方分布的随机变量.所

请问随机变量X服从正态分布

就是满足正态分布的性质.

设x,y分别服从正态分布,那么(x,y)是二维随机变量吗?

/>答案是B.X,Y分别是随机变量,(X,Y)是一个把样本空间映射到实数平面的函数.它是一个二维随机变量.D是错误的.A,B,C的区别在于(X,Y)的分布是不是二维正态分布.我们只需举两个例子就可以说

已知随机变量X服从正态分布N(a,4) ,且P(X>1)=0.5 则实数a与标准差分别为? 能详细点吗,

P(X>1)=0.5,说明a=1,标准差为√4=2再问:能再详细点?再答:P(X>1)=0.5说明P(X<1)=0.5即x=1就是其对称轴,这个对称轴就是a方差是后面的,标准差是方差的算术平方根请参考