已知随机变量x服从二项分布,X B(6,1 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:19:24
已知随机变量x服从二项分布,X B(6,1 3
已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为

np=2.4(1)np(1-p)=1.44(2)1-p=1.44/2.4=0.6p=0.4n=2.4/0.4=6答案:B.n=6,p=0.4.

设随机变量X服从二项分布B(3,0.4),求随机变量Y=X(X-2)的概率分布

X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C

随机变量x服从二项分布B(n,p),E(x)=1.6,D(x)=1.28,n=?p=?

x服从B(n,p)推出:E(X)=npD(X)=npq其中q=1-p所以q=0.8从而p=0.2,n=8

已知随机变量x服从二项分布X~B(6,1/3).则P(X>2)等于?要详解

随机变量x服从二项分布X~B(6,1/3)故P(X>2)=1-P(X=0)-P(X=1)-P(X=2)=1-(1-1/3)^6-6*(1-1/3)^5*(1/3)-(6*5/2)*(1-1/3)^4*

概率统计题目,已知随机变量X服从二项分布b(n,p)求随机变量Y=e^(mX)的数学期望和方差

X--B(n,p)==>p(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)==>E(Y)=所有的y求和y*p(y)=所有的x求和e^(mx)*p(x)=所有的x求和e^(mx)*[C(

已知随机变量X服从二项分布b(n,p)求随机变量Y=e^(mX)的数学期望和方差,请大神赐教.

X--B(n,p)P(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)E(Y)=所有的y求和Σy*P(y)=所有的x求和Σe^(mx)*P(x)=所有的x求和Σe^(mx)*[C(n,x

1. 设随机变量X服从二项分布b(2,p),随机变量Y服从二项分布b(3,p),若P(X≥1)=5/9,则P(Y≥1)=

(1)由P(X≥1)=5/9,可得P(X=0)=4/9=(1-p)^2,故p=1/3,从而P(Y≥1)=1-(1-p)^3=26/27(2)np乘(1-p)^{n-1}=n(n-1)/2乘p^2乘(1

求协方差设随机变量X服从二项分布B(100,0.6),Y=2X+3,求cov(X,Y).

cov(x,y)=cov(x,2x+3)=2cov(x,x)=2D(x)=2np(1-p)=2*100*0.6*(1-0.6)=48

设随机变量x服从参数为(2,P)的二项分布,Y服从参数为(4,P)的二项分布

因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-

设随机变量x服从二项分布,即X~B(n,P),求X为偶数的概率.

稍等,答案奉上还在吗?再问:在的。再答:额,马上给你答案满意请采纳,不懂再追问,谢谢

已知随机变量X服从二项分布,且E(X)=0.24,D(X)=1.68,则二项分布的参数n,p的值为?

由已知,E(X)=np=0.24,D(X)=np*(1-p)=1.68解得n=p=此题无解,怀疑你给的数据给错了.

离散型随机变量ξ服从二项分布ξ~B(x,y),则E(2ξ+4)=?

根据二项分布的期望公式Eξ=xyE(2ξ+4)=2·Eξ+4=2xy+4

设随机变量X服从二项分布(6,0.5),则P(X=3)等于

由二项分布的公式可以知道P(x=3)=C(6,3)*0.5^3*(1-0.5)^(6-3)=20*0.5^6=0.3125

设随机变量X服从二项分布B(2,p),已知P{X≥1}=5/9则p=______.具体过程怎么写啊,

P{X≥1}=5/9→P{X=0}=1-P{X≥1}=4/9P{X=0}=1*p^0*(1-p)^2=4/9→p=1/3

X,Y是相互独立的随机变量,都服从参数为n,p的二项分布 求证:Z=X+Y服从参数为2n,p的二项分布

由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=

设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=59,

/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)