已知随机向量(X,Y)的联合密度函数f(x,y),则E(X)= .

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:10:26
已知随机向量(X,Y)的联合密度函数f(x,y),则E(X)= .
随机向量(X,Y)的联合概率密度函数

1)a{∫(0~)e^(-x)dx}{∫(0~)e^(-y)dy}=1a*1*1=1a=12)F(x,y)=∫(0~x)∫(0~y)e^(-u+t)dudt=(1-e^(-x))(1-e^(-y))(

设随机向量(X,Y)联合密度为 f (x,y)= (1) 求系数A; (2) 求X和Y的边缘概率密度fX(x),fY(y

A=6fX(x)=3e^-(3x),x>0,时;0;其它时fY(y)=2e^-(2y),y>0时;0;其它时f(x,y)=fX(x)*fY(y),独立;(3)P{0

已知二维随机向量 (X,Y)的密度函数f(x,y)=1/3(x+y),求协方差Cov(X,Y)

大学问题,挺有意思的,先求恩,记得是先区分是什么分布,然后求概率分布F(x,y)然后求期望E(x,y),方差D(x,.y),再然后求什么自相关,互相关,(有个记得好像是一般都得0)然后按照协方差公式求

设随机变量X与Y相互独立,下表列出了二维随机向量(X,Y)的联合分布律及关于X和关于Y的边缘分布律中的部分数

首先填x1,y1吧,就是因为P11+P21=P.j,所以有P11=1/6-1/8=1/24然后填P1.,因为P1.*P.1=P11,所以P1.=(1/24)/(1/6)=1/4然后再用P11+P12+

二维随机向量设二维随机向量(X,Y)的联合分布列为/ XY / 0 1 21 0.1 0.3 0.12 a 0.2 0.

/>(1)由概率和为1可知0.1+0.3+0.1+a+0.2+0.1=1解得a=0.2(2)不好列表,我就单个写吧P(X=0)=0.1+0.2=0.3P(X=1)=0.3+0.2=0.5P(X=2)=

设二维随机向量(X,Y)的联合概率密度为p(x,y)={1,0

f(x,y)=1,0再问:其实这题我主要想问得就是相关系数,而且你的答案里,那个应该是y的绝对值在0蛋1之间再答:f(y)=∫[0,|y|](1)dx=|y|,-1

设二维随机向量(X,Y)的联合密度函数为P(X,Y)=A/(1+x^2)(1+y^2)(-∞

∫∫(-∞,+∞)p(x,y)dxdy=Aπ²=1A=1/π²(2)P{(X,Y)∈D}=∫∫p(x,y)dxdy,积分区域为D=∫(0,1)∫(0,x)p(x,y)dydx,=1

对于二维随机向量(X,Y) 联合密度函数f(x,y)=CXY2 X属于(0,1)y属于(0,1)

在区域内积分得1,就能求出C了,f能分解为fx*fy,因此x,y独立

一道概率统计证明题设F(x,y)是二维随机向量(X,Y)的联合分布函数,Fx(x)和Fy(y)分别是X和Y的分布函数,求

看不到题呀,杯具再问:设F(x,y)是二维随机向量(X,Y)的联合分布函数,Fx(x)和Fy(y)分别是X和Y的分布函数,求证F(x,y)>=1-[1-Fx(x)][1-Fy(y)]图片没传成功。。再

已知随机向量(X,Y)的协方差矩阵V为(4 3 3 5)求随机向量(X+3Y,2X-Y)的协方差矩阵和相关系数矩阵

D(X)=4,D(Y)=5,COV(X,Y)=3D(X+3Y)=4+9×5+6×3=67,D(2X-Y)=16-12+5=9COV【(X+3Y),(2X-Y)】=8+15-15=8随机向量(X+3Y,

设随机向量XY服从二维正态分布,X-N(0,3) Y-N(0,4),相关系数=-1/4试写出联合概率密度

这是两道题吧.X~N(0,3)所以mu1=0sigma1=根号3Y~N(0,4)mu2=0sigma2=2相关系数=-1/4=r,这里是二维正态概率密度函数的方程,你把以上5个参数带进去,就是所求.h

设随机向量(X,Y)的联合密度函数为f(x,y)={8xy,0≤x≤y≤1,0其他

f(x)=∫(-∞,+∞)f(x,y)dy=∫(x,1)8xydy=4x(1-x²),0≤x≤1,其他为0.f(y)=∫(-∞,+∞)f(x,y)dx=∫(0,y)8xydx=4y³

设随机向量(X,Y)的联合密度函数为P(X,Y)={Ae^-(2X+Y),(x>0,y>0);0,其他}

A=2.令1=二重积分[0,正无穷]或直接观察p(x,y)可拆成x和y的独立函数乘积,因此x,y是独立的(这个有些教材可能没说,不过是成立的),系数分别为1和2的指数分布因此1x2=2二重积分,上下限

联合概率密度函数设随机向量(X,Y)的分布函数为F(x,y)=A(B+arctan x/2)(C+arctan y/3)

F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)