A(0,m)p为x轴上一动点,角APB最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 00:22:19
P=(3.0)设P为(X.0)pa+pb=(2^2+X^2)+((6-x)^2+6^2)设PA+PB为Yy=4+X^2+36-12X+X^2+36=2X^2-12X+76即Y=2X^2-12X+76=
=8,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足AM向量=2AP向量,NP向量⊥AM向量,点N的轨迹为曲线E.(
设P(x,y),M(x0,y0),由IAPI:IPMI=3,得(4+3x0)/(1+3)=x,(2+3y0)/(1+3)=y,则x0=(4x-4)/3,y0=(4y-2)/3,因为点M(x0,y0)在
1,设N(X,Y)根据条件可以得知NP为AM的垂直平分线有MN=ANMN=r-CNr=根号8r-根号(x+1)^2+y^2=根号(x-1)^2+y^2X^2/2+Y^2=12,设直线FH为直线L,作图
1)设动点Q(x0,y0),P(x,y)则x=(x0+m)/2,y=y0/2解得x0=2x-m,y0=2y因为Q点在圆上,所以(2x-m)^2+(2y)^2=1整理得(2x-m)^2+4y^2=1即为
(3)设点Q的坐标为(x,y),依题意,.解这个方程组,得到点Q的坐标为.…………1分∵平移的路径长为x+y,∴30≤≤36.…………1分∵点Q的坐标为正整数,∴点Q的坐标为(16,16),(18,1
将a.b看成已知量连接PF2则PF2等于2a-PF1=2a-4再根据中位线定理OM=PF2/2=a-2
(1)由题意得CM=BM,∵∠PMC=∠DMB,∴Rt△PMC≌Rt△DMB,∴DB=PC,∴DB=2-m,AD=4-m,∴点D的坐标为(2,4-m).很高兴为您解答,祝你学习进步!有不明白的可以追问
(1)C在第二象限,即点P不在点A或B处因为角OPC=90°,角CPN=90-角OPM所以角OPM=角PCN;因为ΔPCN和ΔPMO都是直角三角形,所以角CPN=角POM.因为线段PM与OB平行,ΔA
设P(a,b),则a-2b=0,过P向圆引两条切线,切点分别为A、B,则直线AB的方程为ax+(b-4)(y-4)=4,(这有现成的公式,其实就是当P在圆上时的切线方程)化简得ax+(b-4)y-4b
设M(xm,ym),N(x,y)P为AM中点,P((xm+1)/2,ym/2),MA所在直线斜率为:ym/(xm-1)NP所在直线斜率为:(1-xm)/ym设NP所在直线方程为:y=(1-xm)x/y
B点坐标知道吧!(1,根号3)梯形要求是:OQ//AB在有设p(X,0)由等三角形APQ来确定Q点坐标!OQ//AB所以X可得再问:那你说怎么做呀,不要光说不练假把式。再答:梯形要求是:OQ//AB在
根据向量AM=2AP,NP垂直于AM课得,NM=NA;即CN+NA=CN+NM=CM=园的半径,所以N的曲线是椭圆C=1,a=根号2;N的方程:X^2/2+Y^2=1;1/3<范围
圆C:(x-3)^2+y^2=100,定点A(3,0)向量AM=2向量AP.向量NP*向量AM=0∴NP为AM的垂直平分线,∴|NA|=|NM|,|CN|+|NM|=10∴|CN|+|NA|=10是定
(1)由题意,点N的轨迹为椭圆,以A(1,0),C(-1,0)为焦点的椭圆∴c=1∵AM向量=2AP向量∴P是AM的中点,又NP向量⊥AM向量∴|NA|=|NM|,|NC|+|NM|=2√2(定值)=
圆C:A(-1,0)半径r=4∵MP=MB(中垂线)∴|MA|+|MB|=r=4=2a(自己画个图感觉下,注意点B在圆内)∴M的轨迹是以点A(-1,0)、点B(1,0)为焦点,a=r/2=2的椭圆即x
设P(a,b)M(x,y)则x=(2+a)/2y=b/2转化a=2x-2b=2y∵P在椭圆上∴带入得(x-1)^2+4y^2=1
设P(x,y), (x≥0,y≥0)过P做PC⊥x轴则 PC=y,FC=|x-3|根据勾股定理,PF²=PC²+FC² (C,F