A*A的伴随矩阵的二范数=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:42:53
A*A的伴随矩阵的二范数=1
什么是矩阵的范数

你可以这样理解将范数规定为矩阵的度量方法,可以通过范数对矩阵进行类似于函数的计算,将矩阵拓延到我们习惯的方法论中

线性代数:A*(伴随矩阵)的作用?

是不是因为伴随就只是求逆的一个桥梁?可以这么说.关于伴随矩阵只需记住2个基本结论:1.AA*=|A|E2.|A*|=|A|^(n-1)

线性代数逆矩阵那一节的定理2:若|A|不等于0,则矩阵A可逆,A^(-1)=(1/|A|)*(A*),A*为矩阵A的伴随

AB=BA=E是A^(-1)=B,B^(-1)=A的充分必要条件.AB=BA只能说AB满足乘法的交换律.再问:逆阵的意思不是说AB=BA,而A就是可逆这意思吗?为什么它要等于E?再答:定义中要求的,没

设三阶方阵A的伴随矩阵A ,且|A|=1/2,求|3A的逆矩阵-2A的伴随矩阵|

|3A^(-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|3A^(-1)-A^(-1)|=|2A^(-1)|=2³(1/|A|)=16再问:仁兄,倒数第三步到倒数第二步怎么来的

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设三阶方程A的伴随矩阵A*,且|A|=1/2,求|(3A)逆矩阵-2A*|

笨蛋:等于-16/27解析…|1/3A*1\|A|-2A*|=|2/3A*-2A*|=|-4/3A*|=(-4/3)三次方乘以|A|的平方《A的逆等于A的伴随乘以1/|A|,|A*|=|A|的阶数减一

问一个范数的问题 矩阵A ||A||

(I+A)^(-1)*(I+A)=I,即(I+A)^(-1)+(I+A)^(-1)A=I,于是||(I+A)^(-1)||=||I-(I+A)^(-1)A||

求伴随矩阵A*的!已知矩阵A= 1 2 32 2 13 4 3 求A的伴随矩阵A*

求伴随矩阵可用定义, 但当A可逆时求伴随矩阵可用公式做. 见下图.

matlab求范数计算矩阵A=randn(5,5)的1阶、2阶、 阶的范数和Frobenius范数,及其行列式、逆、秩和

A=randn(5);nrm1=norm(A,1);nrm2=norm(A);nrmInf=norm(A,inf);nrmFro=norm(A,'fro');detA=det(A);invA=inv(

矩阵范数不等式:矩阵2范数的平方小于等于矩阵1范数乘以无穷范数

取单位向量x使得||Ax||_2=||A||_2,那么||A||_2^2||x||_1=||A^HAx||_1

设n阶矩阵,r(A)=n-1,证明:r(A*)=1 (A*)表示A的伴随矩阵.

知识点:若AB=0,则r(A)+r(B)再问:因为r(A)=n-1,所以|A|=0这个怎么理解?再答:你教材中矩阵的秩怎么定义的?1.矩阵的秩等于行秩等于列秩2.A中最高阶非零子式的阶

如何证明矩阵a的1范数是列元素和的最大值

设A=(aij)x=(xi)|x|=Σ|xi|=1|A|=max{|Ax|,|x|=1}=max{Σ(i)|Σ(j)|aijxj||

A是三阶矩阵,|A|=2,A的伴随矩阵是A*,则|2A*|=

|2A*|=2^3|A*|=8|A|^(3-1)=8*2^2=32用到2个性质1.|kA|=k^n|A|2.|A*|=|A|^(n-1)

已知伴随矩阵求矩阵A的伴随矩阵等于[2 51 3]求矩阵A

设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-

设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)

大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A

设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激

AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.

矩阵的二范数怎么计算?

所有元素的平方和开根号