幂级数x^2的收敛半径为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:17:13
=∑(n=1,∞)[3x^n+(-2x)^n]/n求导得:∑(n=1,∞)[3(3x)^(n-1)+(-2)(-2x)^(n-1)]=3/(1-3x)-2/(1+2x)收敛半径R=1/3.x=1/3发
因为幂级数∑(n=0~∞)[a(x^n)]的收敛半径为3,则幂级数∑(n=1~∞)[na(x-1)^(n+1)]的收敛半径也为3,所以收敛区间满足:-3
收敛半径:r=lim|a(n+1)/an|=limn^2/(n+1)^2=1收敛域:|x-3|
后项比前项的绝对值的极限=|x-1|/2 收敛半径R=2x=3级数发散,x=-1级数收敛 收敛域[-1,3)
如果有用请及时采纳,
再问:求收敛域的时候我能证出来x=3时发散但x=-3的时候敛散性要怎么证明再答:对,严格来说,收敛区域是-3≤x
比值法或根值法.
点击放大:再问:能用这个方法做下吗?再答:两种方法举例,不要死记硬背,要看题目特点决定,很多题两种方法都能适用。
再问:谢谢啊!
-1/2+1/4*x-3/8*x^2+5/16*x^3-11/32*x^4+21/64*x^5...
设an=【((-3)^n+5^n)/n】则收敛半径=an/an+1=1/5x=1/5同1/n比较发散x=-1/5莱布尼茨判别发收敛
f(x)=ln(x^2+3x+2)=ln(1+x)+ln(2+x)=∑(-1)^n[x^(n+1)]/(n+1)+∑(-1)^n[(x/2)^(n+1)]/(n+1)+ln2第一个lim|(an+1)
看这里 看不清楚可以到我空间来看http://hiphotos.baidu.com/%CA%FD%D1%A7%C1%AA%C3%CB%D0%A1%BA%A3/pic/item/575c9ce
f=∑(∞,n=1)x^n/nf‘=∑(∞,n=1)x^(n-1)=1/(1-x)|x|
现在才看到,不知道还需不需要帮你解答.我又不会打那些数学符号,只好大致写一下了.第一题:应该用比值审敛法:lim|(un+1)/(un)|=1/2lim(2n+1)/(2n-1)*|x|2=1/2*|
见 同济六版高数总习题十二 10(1).
收敛半径R=3-(-1)=4再问:解释一下可以吗?。。再答:条件收敛点只能在收敛域与发散域的分界点上
系数之比|a(n+1)|/|an|=1/(n+1)→0,所以收敛半径是+∞