A,B是圆心o上的两点,∠aob=120°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:11:33
A,B是圆心o上的两点,∠aob=120°
已知:如图,AB是圆O的直径,以A为圆心,AO为半径画弧,交圆O于点C,D两点,求证:弧COD=弧CB=弧DB

证明:连接AC,AD∵AB是直径,∴∠ACB=90º∵AC=½AB∴∠CBA=30º同理,∠DBA=30º∴∠CBD=60º∵∠CAB=∠DAB=∠C

在墙上有一个很大的圆形设计图,其中O是圆心,A,B在圆周上,如图所示,现在想测量A,B两点间的距离,但墙很高,

没有看到你的图,但我假设你的图跟我所画的图大致相同.A、B两点在圆上部,位置较高.1.将竹竿贴着墙,让其恰好通过点A和圆心O,在竹竿与圆下部相交处标上A'2.将竹竿贴着墙,让其恰好通过点B和圆心O,在

已知直线PA交园心O于A、B两点,AE是圆心O的直径,点C为圆心o上一点,且AC平分角PAE.过C作cD垂直PA,垂足为

连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA

如图,AB是圆O的直径,AO=10cm,弦CD=16cm,则A B两点到直线CD的距离之和为

过A,O,B,分别作AE⊥CD,OF⊥CD,BG⊥CD于E,F,G所以AE‖OF‖BG又因为AO=BO,所以OG是梯形AEGB的中位线,所以OG=(AE+BG)/2连OC,在直角三角形OCF中,OC=

已知:圆外两点A、B,一个已知圆心O的圆.

提示一下:作圆的切线,切点为T,设A关于切线的对称点是A2,当T,B,A2在一条直线上时最小利用圆x^2+y^2=1的切线方程为x*x0+y*y0=1.计算出A2的位置.这个要用解析法做!简单一点设过

如图,圆O与圆P相交于A.B两点.圆P经过圆心O,点C是圆P的优弧AB上任意一点,连AB.AC,BC,OC.(1)指出

答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D

+Q和-Q是两个等量异种点电荷,以点电荷+Q为圆心作圆,A、B为圆上两点,MN是两电荷连线的中垂线,与两电荷连线交点为O

等量异号电荷电场线分布如图所示:A、由图示电磁线分布可知,A处的电场线比B处的电场线稀疏,则A点的场强小于B点的场强,故A错误;B、电场线与等势面相互垂直,电场线从高等势面指向低等势面,由图示可知,A

如图为一项体育娱乐节目示意图.水平地面上有一个半径为R的圆形跑道,A、B、C、D是跑道上的四个位置,O为跑道圆心,∠AO

(1)当小车停于B点,为使沙袋能落入小车,则沙袋作平抛运动的水平距离为x=L2+R2①又h=12gt2②x=v0t③由以上①②③式得沙袋抛出时的水平速度v0=g(L2+R2)2h.(2)沙袋落地前,小

如图,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直.看图,图有完整的题目

存在只需要满足众多条件中的一个即可再问:那个条件?能不能举个例子再答:嗯哼你的题我看不清呢只是我们当时期中考试的时候全班除了第一名之外全部都死在这个提上了我们班主任告诉我们存在就只满足众多条件中的一个

如图,A,B是圆心O上的两点,角AOB=120度,C是AB弧的中点,求证四边形DACB是菱形

连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形

已知A、B是单位圆O上的动点,且A、B分别在第一、二象限,C是圆O与x轴正半轴的交点,△AOB为等腰直角三角形,记∠AO

(1)由已知可得:tanα=yx=4535=43,(2分)则sin2α+sin2αcos2α+cos2α=sin2α+2sinαcosαcos2α +cos2α-sin2α(4分)=tan2

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B

:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即

如图所示,○P与○O 相交于A、B两点,○P经过圆心O,点C是○P的优弧AB上任意一点(不与点A、B重合),连接AB、A

1)与角ACO相等的是角BCO2)点P和点O连线,与圆P的交点,记为C下证明之,连接AC,AO,因为CO为圆P直径,所以角CAO=90°.因为AO是圆O半径,所以AC是圆O切线3)半径之比为1比1,证

求过两点A(1,4)、B(3,2),且圆心在直线y=O上的圆的标准方程.并判断点M1

设圆的标准方程为(x-a)^2+y^2=b^2,则(1-a)^2+4^2=b^2(3-a)^2+2^2=b^2所以a=-1,b^2=20所以圆的标准方程为(x+1)^2+y^2=20

如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,交BD于延长线

(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A

如图1,AD为圆心O的直径,B,C为圆心O上两点,点C在弧AB上,且弧AB=弧CD,过A点做圆心O的切线,

(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;      

有两点A、B分别在直线两侧,求作直线上的一点O,连接AO、BO,使这两条线段差最大

方法:做A点关于这条直线l的对称点A',连结A'B,当A'与B重合,则AO,BO的差始终为零,O可以是直线l上任意一点;当A'不与B重合时1.若直线A'B与直线l平行,则O无限远离A,B2.若直线A'

已知圆上两点a、b的坐标和半径R求圆心O的坐标

已知点A(a,b)B(c,d),半径为R设O(x,y),AB的中点为M(m,n)其中m=(a+c)/2,n=(b+d)/2可知OM和AB垂直且OA的长度为R所以用向量的方法:向量OM和向量AB乘积为0

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60