平面简谐波方程y=Acos
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:26:51
由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运
(1)y=0.04cos[2π(5t+x/0.4)-3/2π](2)y=0.04cosπ(2t/5+1/2)
x=acos^3t,y=asin^3t是星形线,它的面积为∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0=-3*a^2∫sin^4t*cos^2tdt=-3a^2∫(sin^4
x/u表示波以u的速度传了x的距离所用的时间,φ表示初始的相位,就是余弦函数的初始的一个角度,wx/u是以u的速度传了x的距离后,产生的相位差,其中w是波的振动频率
(Ⅰ)曲线C1的参数方程为x=acosφy=sinφ(1<a<6,φ为参数).C1的直角坐标方程为x²/a²+y²=1曲线C2的极坐标方程为P=6cosφ.C2的直角坐标
t=0,x=0.1直接代入即可2/3pai
(1)将t=5带入波动方程:位移y=5cos(20-4x)cm.(2)将x=4cm带入波动方程:震动规律是:位移随时间变化的波动方程是:y=5cos(3t-10).(3)波速是波长除以周期,波长是两个
你的题目中有一个问题,没有指明哪个是参数,另外,感觉你应该核对一下题目,x,y的表达式估计不对,请核对后追问.如果题目无误,θ是参数则x-y=acosθ,y=asinθ∴(x-y)²+y
1)振幅:0.2周期:2π/0.4π=5波长:2π/(0.4π*1/0.08)波速=波长/周期2)即x=0时y=0.2cos[0.4πt+π/2]初相:π/2任一时刻的振动速度:对y=0.2cos[0
这道题可以用旋转矢量法来求首先令两个波的方程中的x=λ/4,得到改点处的振动方程,然后在以振幅为半径,矢量起点为圆心的圆中,规定一个正方向,然后,找出各自振动方程的初相位,画好后,将两个矢量利用平行四
由图,此时原点处于平衡位置向上运动,也就是相位为-π/2.又波长为2b,即ω=2πf=2πu/2b=πu/b综上选D再问:还是没明白,初相位怎么弄出来的啊·求详解。再答:初相位可以通过旋转矢量法,或者
1、把x=-lambda带入,u==Acos[2π(t/T+1)+φ]2、对相同的t,x=2时y达到相同的相位,故波长lambda=2m.走过一个波长,需要的时间为t,pi*100t=2*pi,t=0
波由原点传播到+x点所用时间为t'=x/v+x点在t时刻的振动情况(相位)与原点在(t-t')时刻的振动情况(相位)相同,故y(x,t)=y(0,t-t')=Acosw(t-t')=Acosw(t-x
求振动方程,二次对T求导,代入T再问:没听懂呵呵不是只有振动方程才二次求导吗?这个波动方程怎么转换为振动方程啊?再答:设振动方程的标准式,由波动方程可得点,代入可解振动方程..........
一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2
波长为0.4m;振幅为0.04m,v=λff=v/λ=0.08/0.4=0.2HzT=1/f=5s角频率ω=2πf=0.4π,初相位为-πy=0.04sin(0.4πt-π)或者初相位为πy=0.04
两边乘ρρ²=2aρ(cosθcosπ/3+sinθsinπ/3)ρ²=aρcosθ+aρsinθ*√3x²+y²=ax+√3ay
y=acosx=bsin+cc为平行偏移量