A.B均为n阶方阵.若A.B相似,证明|λE - A| = |λE - B|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:17:25
A.B均为n阶方阵.若A.B相似,证明|λE - A| = |λE - B|
线性代数证明题 若A和B为奇异的n阶方阵,则A+B也为奇异的.

这个结论是不成立的.如:A=[10][00]B=[00][01]A+B=[10][01]|A|=|B|=0|A+B|=1

线性代数问题:A、B为n阶方阵

由A*A*B=B*B*A和A³=B³可得A³+B*B*A=A*A*B+B³(A^²+B²)*A=(A²+B²)*B∵A&

请教一道高数题……若A,B均为n阶方阵,AB=O,证明,r(A)+r(B)≤n ps.大写字母是向量

设矩阵B与AB=0右端的零矩阵的列分块分别为B=(β1β2…βn),0=(00…0),由分块矩阵乘法,A(β1β2…βn)=(00…0),(Aβ1Aβ2…Aβn)=(00…0)即β1β2…βn(Ⅰ)是

设A、B均为n阶方阵,I为n阶单位矩阵,若A+B=AB,求证AB=BA

A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=

设A,B为N阶方阵,若A可逆,证明AB与BA相似

因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.

A.B为n阶方阵且A+B+AB=0,证明AB=BA?

A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

大学线性代数 设A,B均为n阶方阵.1.A,B满足A+B+AB=0.证明E+A,E+B互为逆阵,

1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设A,B均为n阶方阵,且B=B*B,A=E+B.求证A可逆,并求A逆

用B^2表示矩阵B的平方.因为B=B^2,A=E+B,所以A^2=(E+B)^2=E+2B+B^2=E+2B+B=E+3B(1)又因为A=E+B,B=A-E,3B=3A-3E,所以由(1)式:A^2=

设A,B均为N阶方阵且|A|=2,|B|=-3.求A^(-1)B*-A*B^(-1)

因为有A^-1=A*/detA,原式等于A*B*(2--3)=5A*B*.估计是求行列式,det=5^n*2*(-3)=-6*5^n

问一道线性代数题目设A,B均为n阶方阵,且r(A)

解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0

若A,B均为N阶方阵,则A+B的绝对值等于A的绝对值加上B的绝对值总成立么?举例说明

对方阵来说|A|不是表示A的绝对值,而是A的行列式.|A+B|=|A|+|B|一般是不成立的.例如A=B=E(N阶单位阵),有|A|=|B|=1,但|A+B|=|2E|=2^N.

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!

1.A、B均为n阶方阵,则必有A.det(A)det(B)=det(B)det(A) B.det(A+B)=det(A)

A、B均为n阶方阵,则必有det(A)*det(B)=det(AB)=det(B)det(A),因而选A而(A+B)的转置是等于A的转置加B的转置.对于B:举个例子可知是错的:A={10,01},B=

方阵|AB|=|BA|成立吗?A,B为n阶方阵.

不一定成立举反例就行了