a11 a12 中元素aij(i,j=1,2),则a11aA21
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:35:02
行列式等于0.将所有列都加到第1列,则第1列元素全等于0,故行列式等于0
挺简单得一个题呀!不过要注意一个问题就是余子式和代数余子式是不同的,代数余子式多了个(—1)^i+ja12得代数余子式=-|x0|=-4x=8所以x=-2|54|这时a21得代数余子式=A21=-|x
等于V.再问:为啥?再答:V的第1行元素的代数余子式之和等于V,这是展开定理第2行元素的代数余子式之和等于将V的第2行元素全换成1得到的行列式,等于0其余类似.
行列式定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和a21A21+a22A22+a23A23=|A|=2推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和
由条件Aij+aij=0(i,j=1,2,3),可知A+A*T=0,其中A*为A的伴随矩阵,从而可知|A*|=|A*T|=|A|3-1=(-1)3|A|,所以|A|可能为-1或0.但由结论r(A*)=
因为aij=Aij,所以|A|=|A*|由A^(-1)=A*/|A|得|A|A^(-1)=A*两边取行列式|A|³|A^(-1)|=|A*||A|³/|A|=|A||A|=1
对比A^T的各个元素即得Aij=aij再问:Aij是代数余子式,而aij只是一个数,它们的计算结果明显不同,还是不懂,能解释一下吗再答:代数余子式是一个数值
因为Aij不等于0,所以r(A)=n-1,AX=0的解的线性无关的个数为n-r(A)=1又因为AA*=|A|E=0,所以A*的列向量都是AX=0的解,所以方程组的通解可表示
解:由已知D=111...11122...22123...33......123...n-1n-1123...n-1nri-r(i-1),i=n,n-1,...,2--从第n行开始,每行减上一行111
由已知,|A|=2*3*4=24所以A*的特征值为12,8,6所以A11+A22+A33=12+8+6=26
我来帮你解决吧,答案是(-1)的n+1次方再乘以(n-1)*(2的n-2次方)由于是网页留言没法用公式编辑器了,我说的意思你懂的,具体解法如下:由题设可知,这是一个对称行列式,其具体元素如下:012.
本题可以这样证,A的伴随矩阵A*(j,i)位元素为aij代数余子式Aij,由此可见,你给的题目是A的每一个元素aij等于它的代数余子式,即aij=Aij,得到A=(A*)'换种写法是A*=A'其中'是
所求行列式=012…n-2n-1101…n-3n-2210…n-4n-3……………n-2n-3n-4…01n-1n-2n-3…10rn-r(n-1),r(n-1)-r(n-2),…,r2-r1012…
定义:在矩阵的某一条对角线上的数字不全为0,而其余部分为0的矩阵,即为对角阵.如果不是方阵,怎么会有对角线?所以必然是方阵.
答案没什么问题,你再想想.
假设矩阵变量Ai行j列A[i,j]i行的所有元素A[i,1..-1]j列的所有元素A[1..-1,j]
上三角阵主对角线元素即为特征值,由题意可知A的特征值为a,且为n重.即他的代数重数为n.现要求A可对角化,必须几何重数等于代数重数:即其次线性方程组(aE-A)X=0的解空间维数等于n,这就要求ran