a1=1,a2=2,3an 2-5an 1 2an=0,求an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:36:44
设x=(x1,x2,x3)与a1正交,则x1+2x2+3x3=0.取其一组正交的基础解系即为所求,这是常用的方法令x2=1,x3=0得a1=(-2,1,0)^T--这个正常取取x1=1,x2=2,得a
解题思路:第一问的简单方法没想出,想到的是“先猜想结论,再用数学归纳法进行证明”(但不是证明的猜想的这个结论,而是由猜想的结论先求出an的通项公式,用数学归纳法证明an的通项公式正确,从而猜想的结论正
Sn=(a1+an)n/2Sn=na1+n(n-1)d/2=n[2a1+(n-1)d]/2=na1+n²d/2-nd/2=n²d/2+n(a1-d/2)Sn=An²+Bn
左边=(√a2-√a1)\(√a2-√a1)(√a2+√a1)+(√a2-√a3)\(√a2-√a3)(√a2+√a3)=(√a2-√a1)\(a2-a1)+(√a2-√a3)\(a2-a3)a2-a
|B|=|a1+a2,2a2|=2|a1+a2,a2|=2|a1,a2|=2|A|=2
把三个正整数化为A,B,a*b*c=a+b+ca(b*c-1)=(b+c)若b*c=1,b+c=0,a取任意数.解得,b、c不存在实数解若b*c不等于1,满足a=(b+c)/(b*c-1)就可以了.如
∵在数列{an}中,a1=1,an+1=an2-1(n≥1),∴a2=a21-1=0,同理可得a3=-1,a4=0,a5=-1.∴a1+a2+a3+a4+a5=-1.故选:A.
Sn=a1+a2+…+an=2n-1a1=S1=1n>1时,an=Sn-S(n-1)=2n-1-2(n-1)+1=2a12+a22+…+an2=1+4+4+4+------+4=4n-3
设等比数列的公比为q,则由等比数列的性质可知数列{an2}是以q2为公比的等比数列Sn=a1+a2+…+an=2n-1∵a1=S1=1,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1适合n
因为|ai|/ai=1或-1又因为:|a1|/a1+|a2|/a2+|a3|/a3+...+|a2011|/a2011+|a2012|/a2012=1968;所以这2012组中,有22个取到-1;y=
1.若a1+a2+a3+a4=80,a2+a3+a4+a5=240,求an前提条件你漏了an是等差数列?若是等差数列(a2+a3+a4+a5)-(a1+a2+a3+a4)=4d=160所以d=40所以
(1)6a1=a1^2+3a1+2解得a1=1或2(2)6sn=an^2+3an+26s(n-1)=a(n-1)^2+3a(n-1)+2两式想减得6an=an^2-a(n-1)^2+3an-3a(n-
推导一下,对于B的行列式,第三列减去第二列,然后第二列减去第一列,得|a1+a2+a3,a2+3a3,a2+5a3|,然后第三列减去第二列,得|a1+a2+a3,a2+3a3,2a3|,然后第二列X2
R(a1,a2,a3)=3,)a1,a2,a3线性无关,R(a1,a2,a3,a4)=3,a1,a2,a3,a4线性相关.从“无关相关表示定理”,a4是a1,a2,a3的线性组合.R(a1,a2,a3
a1+a2+a2+a3+a3+a4+……+a99+a100+a100+a1=2(a1+a2+a3+...+a99+a100)=1+2+3+……+100=50x100+50=5050∴a1+a2+a3+
∵当n=2时,a1+a2=3,当n=1时,a1=1,∴a2=2,∴公比q=2,∴等比数列{an}是首项是1,公比是2的等比数列,∵a12=1,a22=4,∴等比数列{an2}是首项是1,公比是4的等比
a1=0,a2=-|a1+1|=-|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,…,所以,n是奇
∵2a2,S3,a4+2成等差数列,a1=1∴2S3=2a2+a4+2∴q≠1∴2×1−q31−q=2q+q3+2∴q3-2q2=0∵q≠0∴q=2∴数列{an2}是以1为首项,以4为公比的等比数列前