a1=2, an 1=3an-5, find an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:10:00
由条件得a1=2,a2=5.且有:a2-a1=3*1,a3-a2=3*2,a4-a3=3*3,...an-a(n-1)=3*(n-1),累加得,an-a1=3*(1+2+3+...+n-1)=3n(n
a1+a2+.+an=2^na1+a2+.+an+a(n+1)=2^(n+1)两式相减得a(n+1)=2^n所以an=2^(n-1)在已知式中令n=1得a1=2令n=2得a2=2所以数列的通项公式为a
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
2an+1=-3an→an+1/an=-3/2即等比数列的公比q=-3/2数列{an}的通项公式为:an=a1×q的(n-1)次方→an=5×(-3/2)的(n-1)次方
方法1:an+1=an/(2an+3)两边取倒数:1/a(n+1)=2+3/an设bn=1/anb(n+1)=3bn+2b(n+1)+1=3(bn+1)[b(n+1)+1]/(bn+1)=3∴{bn+
q=a(n+1)/an=-3/2an=a1*q^(n-1)=5*(-3/2)^(n-1)
是求什么?{an}的通项公式吗?通项公式是:A(n+1)+k=b(An+k),即A(n+1)-bAn+k(1-b)=0,对照原式解出k和b,其余步骤跟上题相同.
a1=1an=an-1+3n-2an-1=an-2+3(n-1)-2...a2=a1+3*2-2左右分别相加an=a1+3*(n+n-1+...+2)-2*(n-1)an=1+3*(n+2)*(n-1
(1)an=2a+3,∴an+3=2[a+3],∴数列{an+3}是等比数列.(2)an+3=(a1+3)*2^(n-1),an=(a1+3)*2^(n-1)-3=(6)*2^(n-1)-3.再问:2
a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1
提取公因式2的an次方.下面不用多说了吧?再问:继续说撒再答:不是吧。。2的an+1次方等于2的an次方*2,因此提出2的an次方后,变为(2-1)2^an=3,变成2的an次方等于3,an等于log
由an+2-3an+1+2an=0,得an+2-an+1=2(an+1-an)所以{an+1-an}是等比数列,即an+1-an=(a2-a1)•2n-1=3•2n-1再注意到
(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2
待定系数法因为a(n+1)=2an-n^2+3n设a(n+1)+p(n+1)^2+q(n+1)=2(an+pn^2+qn)展开整理得a(n+1)=2an+pn^2+(q-2p)-(p+q)与原式一一对
依次第二列加上第一列,第三列加上第二列...原式=-a100...00-a20...0.000...-an0123...nn+1所以原式=(n+1)*(-1)^n*a1*a2*...*an
要证明的结论有问题吧,应该是证明“对任意的x>0,an≥1/(1+x)-1/(1+x)²*[2/(3^n+2)+x],n=1,2,……”吧?证明:a(n+1)=3a(n)/[2a(n)+1]
是等比数列吧?3a(n+1)-an=03a(n+1)=ana(n+1)/an=1/3,等比1/3a1=2an=2/3^(n-1)=6/3^n
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
(1)证明:由条件得a[n+2]-a[n+1]=2(a[n+1]-a[n])首项为a[2]-a[1]=5-2=3,公比为2,所以{a[n+1]-a[n]}为等比数列由(1)得a[n+1]-a[n]=3