a1=1,an≠0,ana(n-1)=λsn-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:12:08
两边同除ana(n-1)可得1=1/an-1/a(n-1)所以{1/an}是一个等差数列,公差d为1首项是1/a1=2所以1/an=a1+(n-1)d=2+(n-1)=n+1an=1/(n+1)
先列式4*(S1)=(a1)*(a2).14*(S2)=(a2)*(a3).2...4*(Sn)=(an)*(a(n+1)).n2式-1式,3式-2式,.可以得出a3-a1=4a4-a2=4...an
sn=1/d(1/a1-1/a2+1/a2-1/a3+.+1/an-1/a(n+1))=1/d(1/a1-1/a(n+1))=nd/da1a(n+1)=n/a1a(n+1)
a2=a1q=6bn=1/ana(n+1)则bn/b(n-1)=a(n-1)/a(n+1)=1/q²=1/9即b1=1/12bn公比是1/9所以Sn=b1+……+bn=1/12*(1-1/9
由AnA(n-1)=A(n-1)-An两边同时除以AnA(n-1),便得到1/An-1/A(n-1)=1,所以B1=3,Bn-B(n-1)=1,于是Bn=n+2.所以An=1/(n+2)则An/n=1
(1)得到等差数=-1,则bn=-n-3/2(2)an=1-2/(2n+3);设方程f(x)=1-2/(2x+3),任意x1,x2,x1>x2>0则f(x1)-f(x2)=4(x1-x2)/[(2x1
√ana(n-2)—√a(n-1)a(n-2)=2a(n-1)(n≥2),原式两边同时除以a(n-1)得√[ana(n-2)/a(n-1)^2]—√[a(n-2)/a(n-1)]=2令Bn=√[an/
[2a(n+1)-an]/[2an-a(n+1)]=ana(n+1)2an²a(n+1)-ana(n+1)²=2a(n+1)-an2an²a(n+1)-2a(n+1)=a
1)bn-b(n-1)=1/(an-1)-1/[a(n-1)-1]=[a(n-1)-an]/[ana(n-1)-an-a(n-1)+1]=-1为等差数列2)bn=b1+(n-1)d=-5/2+(n-1
1.a²n-an*na(n-1)-2a²(n-1)=0(an-2a(n-1))(an+a(n-1))=0正数数列an中,所以an>0,an+a(n+1)>0an-2a(n-1)=0
(1)∵﹛an﹜是等比数列∴an=a1q^(n-1)=2^(n-1)∴1/ana(n+1)=1/[2^(n-1)2^n]=1/2^(2n-1)=1/[2×4^(n-1)]=1/2×(1/4)^(n-1
证明:1)数列An满足:A1=1,An≠0因为:An*A(n+1)=λ*Sn-1所以:A(n+2)*A(n+1)=λ*S(n+1)-1两式相减:[A(n+2)-An]*A(n+1)=λ*[S(n+1)
因为1/anan+1=1/an*(an+d)=1/d[1/an-1/(an+d)]=1/d[1/an-1/an+1]所以1/a1a2+1/a2a3+…+1/anan+1=1/d[1/a1-1/a2+1
an=a1+(n-1)dd/ana(n-1)=1/a(n-1)-1/an1/ana(n-1)=1/d*[1/a(n-1)-1/an]Sn=1/d*[1/a1-1/a2+1/a2-1/a3+……+1/a
1=a1a2=r,故bn=r*q^(n-1)又b(n+1)/bn=a(n+1)*a(n+2)/(an*a(n+1))=a(n+2)/an、b(n+1)/bn=q可得当n为奇数时an=a1*q^((n+
1.a1=3且a(n+1)=an+5ana(n+1)a(n+1)=an+5ana(n+1)1/an=1/a(n+1)+51/a(n+1)-1/an=-51/an=1/a1-5(n-1)=1/3-5(n
An=[A(n-1)]/[3A(n-1)+1]==>1/An=3+1/A(n-1)==>{1/an}为等差数列,首项=1/A1=1,公差=31/An=1/A1+3(n-1)=3n-2==>An=1/(
∵﹛an﹜是等比数列∴an=a1q^(n-1)=2^(n-1)∴1/ana(n+1)=1/[2^(n-1)2^n]=1/2^(2n-1)=1/[2×4^(n-1)]=1/2×(1/4)^(n-1)(注
1=a1a2=r,故bn=r*q^(n-1)又b(n+1)/bn=a(n+1)*a(n+2)/(an*a(n+1))=a(n+2)/an、b(n+1)/bn=q可得当n为奇数时an=a1*q^((n+
an-a(n+1)=ana(n+1)【两边同除以ana(n+1)】得:1/[a(n+1)]-1/[a(n)]=1即:数列{1/(an)}是以1/a1=1为首项、以d=1为公差的等差数列.则:1/[a(