广义积分e的-ax次方dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:32:41
广义积分e的-ax次方dx
求广义积分 ∫(0到正无穷)e^(-x)(cos ax-cos bx)/x dx ,b>a>0.

求广义积分 ∫(0到正无穷)e^(-x)(cos ax-cos bx)/x dx ,b>a>0.再问:第一步是什么意思啊?再答:关于x取拉

若广义积分∫(上限为正无穷,下限为e)1/【x*(lnx)的k次方dx收敛,则k的取值范围为,

∫(上限为正无穷,下限为e)1/x*(lnx)^kdx=∫1/(lnx)^kdlnx(x上限为正无穷,下限为e)=1/(1-k)∫d(lnx)^(1-k)(x上限为正无穷,下限为e)=[1/(1-k)

关于广义积分的问题!广义积分∫x^3e^(-x)dx积分上限为:正无穷积分下限为:0怎么解出的答案.

用分步积分法,先把e^(-x)放到微分符号后面,然后使用分部积分公式:原式=-∫x^3de^(-x)=∫e^(-x)d(x^3)-(x^3)e^(-x)(一定要写上下限)注意上式中的后面一项在正无穷大

求积分 e的根号X 次方dx

∫e^√xdx令u=√x,x=u^2,dx=2udu原式=2∫u*e^udu=2∫ud(e^u)=2(u*e^u-∫e^udu),分部积分法=2u*e^u-2*e^u+C=2e^u*(u-1)+C=2

计算广义积分∫0到+∞ e^(-x^2)dx 答案是(√π)/2怎么算的?

令x^2=t,将dx变换到dt,再用伽马函数就行了再问:原来是伽马函数!!谢谢了!!

广义积分 ∫ e^x/1+e^2x dx=?(下限-∞,上限∞)

∫(-∞~∞)e^x/(1+e^2x)dx=∫(-∞~∞)1/(1+e^2x)d(e^x)=lim(x-->∞)arctan(e^x)-lim(x-->-∞)arctan(e^x)=π/2-0=π/2

求下列广义积分的敛散性∫上限是正无穷,下限是0(xe的-x次方dx)

∫xe^(-x)dx=lim∫xe^(-x)dx=lim[-xe^(-x)-e^(-x)]|=lim[-ue^(-u)-e^(-u)+1]=lim[-u/e^u-1/e^u]+1=1收敛

判别广义积分∫(上e 下1/e) ln|x-1|/(x-1) dx的敛散性

这个积分应该是收敛的;∫{x=1/e→e}[ln|x-1|/(x-1)]dx=∫{x=1/e→1-δ}[ln(1-x)/(x-1)]dx+∫{x=1-δ→e}[ln(x-1)/(x-1)]dx……δ→

求广义积分:x乘以[e的(-x的2次方)]dx,上限是(正无穷),下限是0?

∫(0,∞)x*e^(-x^2)dx=1/2∫(0,∞)e^(-x^2)d(x^2)=-1/2*e^(-x^2)(0,∞)=(-1/2)*(0-1)=1/2

判断下列广义积分的敛散性∫x^3e^(-x^2)dx,[0,∞]

直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2

求广义积分的值,和敛散性 ∫ e^(2x) dx

=(-1/2)∫e^(-2x)d(-2x)=(-1/2)e^(-2x)|=(-1/2)[0-e^(-2)]=1/(2e²)

积分号e的x次方sinx的平方dx

=e^xsinx-∫e^xcosxdx=e^xsinx-∫cosxd(e^x)=e^xsinx-[e^xcosx-∫e^xd(cosx)]=e^xsinx-(e^xcosx∫e^xsinxdx)=e^

判断广义积分的敛散性,:∫(0,负无穷)e^(2x)dx

∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2

讨论广义积分∫(1,2) dx/(xlnx)的敛散性

那个原函数可以求出来啊,是ln(lnx)+C由此可知此积分发散再问:求原函数的过程可以写出来吗?再答:∫dx/(xlnx)=∫d(lnx)/lnx=ln(lnx)+C再问:请问∫dx/(xlnx)=∫

求x*e的-x^2次方*dx的积分?

I=∫xe^(-x^2)dx=1/2∫e^(-x^2)dx^2(t替换x^2)=1/2∫e^(-t)dt=-1/2e^(-t)(x^2替换t)=-1/2e^(-x^2)希望采纳

广义积分题已知广义积分∫e^(k|x|)dx=1,广义积分上限是正无穷大,下限是负无穷大,则k=___?

分成两部分,在负无穷到0上是∫e^(-kx)dx,0到正无穷上是∫e^(kx)dx两个式子一加就出来了