A=diag(1,-2),则A三次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 02:08:43
实对称矩阵必可以相似对角化,正定,那么所有特征值大于0,所以和单位矩阵合同,再问:能不能给个证明过程?考试时用!可逆矩阵p能表达出来吗?再答:不会吧?这怎么能写出具体的啊。矩阵都不知道,什么样子也不知
/>A^-1BA=4A+2BA两边同时左乘A得BA=4A²+2ABA(E-2A)BA=4A²两边同时右乘A^-1得(E-2A)B=4A那么B=(E-2A)^-1·4AE-2A=di
证明:A为实对称矩阵,则币可以对角化,令Aa=xa则A^2=Ax^2a^2=xax(x-1)a=0a≠0,x=0,1则A矩阵的特征值只能为0,1所以r(A)=r(=特征值非0的个数所以
diag(a)是对角矩阵,主对角线上的元素都是a.E是单位矩阵,主对角线上元素都为1.
实对称矩阵一定可以正交相似对角化.且A的特征值必为1或者0,由此结论显然
diag是(提取对角元素)还有线性代数函数有关的:det(求行列式值),inv(矩阵的求逆),qr(二次余数分解),svd(奇异值分解),bdiag(求广义本征值),spec(求本征值),schur(
首先有三个等式(A是可逆的)A^(-1)=A*/|A|AA*=diag(|A|,|A|,|A|,|A|)=|A|E|A||A*|=|A|^n即|A*|=|A|^(n-1)本题n=4由已知ABA^(-1
取出a阵的对角元,然后构建一个以a对角元为对角的对角矩阵.A=1234>>diag(diag(A))ans=1004
由已知A*BA=2BA-8E等式两边左乘A,右乘A^-1得|A|B=2AB-8E又因为|A|=1*(-2)*1=-2所以-2B=2AB-8E所以(2A+2E)B=8E所以B=4(A+E)^-1=4di
A相似于对角阵diag(1234),所以A得特征值是1,2,3,4|A|=1*2*3*4=24AA*=|A|EA*=|A|A^(-1)=24A^(-1)所以A*的特征值是24*1^(-1)24*2^(
-1. 用性质计算.经济数学团队帮你解答.请及时评价.
等式两边同时左乘A:|A|BA=2ABA-8A等式两边同时右乘A的逆:|A|B=2AB-8E这样解出B=diag(2,-4,2)
diag是(提取对角元素)还有线性代数函数有关的:det(求行列式值),inv(矩阵的求逆),qr(二次余数分解),svd(奇异值分解),bdiag(求广义本征值),spec(求本征值),schur(
P^(-1)=0.1.2.1.0.02.3.4.0.1.04.7.9.0.0.1R1→R2,2.3.4.0.1.00.1.2.1.0.04.7.9.0.0.1R3-2R12.3.4.0.1.00.1.
因为A相似于对角矩阵diag(2,2,2,-2)所以A的特征值为2,2,2,-2|A|=-16所以A*的特征值为(|A|/λ):-8,-8,-8,8所以1/4A*+3I的特征值为(1/4λ+3):1,
行列式等于特征值的乘积.经济数学团队帮你解答.请及时评价.
解由A*BA=2BA-8E得(A*-2E)BA=-8E,B=-8(A*-2E)-1A-1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E-2A)-1=-8(-2E-2A)-1=
A*=A的行列式乘以A的逆所以A*BA=2BA-8E可以转化为A的行列式乘以A的逆BA=2BA-8E,同时左乘A,右乘A的逆,可以得出:8E=(2A-A的行列式)B,将A=diag(1,-2,1),其
因为相似矩阵的行列式相同,所以有|A|=2ab-a^2-b^2=-(a-b)^2=|B|=0所以a=b.又|A-λE|=1-λa1a1-λa1a1-λr1-r3-λ0λa1-λa1a1-λc3+c1-