AB=A对立事件B对立事件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:30:39
AB=A对立事件B对立事件
互斥事件 对立事件

解题思路:利用概率计算解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.

证明 如果P(A|B)=P(A|B的对立事件)那么事件A,B相互独立.

若独立,则由P(AB)=P(A)P(B)得P(B|A)=P(AB)/P(A)=[P(A)P(B)]/P(A)=P(B)P(B|A*)=P(A*B)/P(A*)=P(A*)P(B)/P(A*)=P(B)

A 和 B为互不相容的俩个事件,则P(AB的对立事件)=

因为A与B互不相容所以P(A+B)=P(A)+P(B)-p(AB)得到P(AB)=.P(AB的对立事件)指的是1-P(AB)具体的自己算吧!

概率题求详解1.设事件A与B同时发生时,事件C必发生,则( )A.AB的对立事件包含C的对立事件B.C包含A且C包含BC

第一题没有一个答案正确,选择支给得有问题.C的对立事件包含AB的对立事件;C的对立事件包含A并B的对立事件;C=C交AB.不知道是否是你用汉字表述集合符号的时候写错了?第二题,选C.第三题,选B.第一

设A,B独立,AB包含于D,A,B的对立事件的交集包含于D的对立事件,证明P(AD)>=P(A)P(D)

这个题目难度不小,P(AD)=P(B的对立事件交DUAB)=P(B的对立事件交D)+P(AB)>P(A)P(B的对立事件交D)+P(A)P(BD)=P(A)P(D)

事件a和事件b互斥,其对立事件互斥吗?

不一定!你可以画图容易理解

求“如果A发生,则B发生”的对立事件.

这个问题是比较迷惑人的.它容易让你往复杂的地方去想.其实A发生,则B就发生的意思用式子表示就是A=>B,它的反面(对立事件)就是A≠>B.换成文字来说的意思就是“如果A发生,则B不一定发生,B可能发生

p(A)=p(B)=1/2,证明p(AB)=p(A的对立事件B的对立事件)

记A与B的对立事件分别为C何D若A,B相互独立,P(AB)=P(A)P(B),P(CD)=P(C)P(D),P(CD)=(1-P(A))(1-P(B))=1-P(A)-P(B)+P(A)P(B)=1-

概率论对立事件公式A-B=A(B的对立)是否等于(A的对立)交B

A-B=A∩非B,不等于非A∩BA-B的对立事件是:非(A-B)=非(A∩非B)=非A∪B反演律公式:非(A∩B)=(非A)∪(非B);非(A∪B)=(非A)∩(非B)

呃 还是刚才那题P(B,A的对立事件)/P(【A的对立事件】)=P(【A的对立事件】|B)*P(B)这是为什么?难道不应

不好意思少写了一个,P(B【A的对立事件】)/P(【A的对立事件】)=P(【A的对立事件】|B)*P(B)/p(【A的对立事件】),少写了一个分母P(【A的对立事件】*B)应该和P(B*【A的对立事件

1事件A,B是互斥事件是事件A,B是对立事件---------条件

1.必要补充分,因为对立互斥并且两事件至少有一个发生9.(-1,0).f’(x)=e^x+a,为单调递增函数,在(-∞,0)有极值说明f’(x)=0的根在(-∞,0)区间得a∈(-1,0)10.A3(

事件A的对立事件为A`,事件B的对立事件为B`,A和B为互斥事件,则A`和B`也一定互斥吗

不一定,加入AB为两个敌对的帮派,A】和B】为AB两帮派的小弟,你说A】和B】互斥吗?

概率论:若A包含于B ,A=A正确吗?若A包含于B ,B的对立事件包含于A的对立事件对吗?

A=A应该是不管怎么样都正确的吧!若A包含于B,B的对立事件包含于A的对立事件对吗?正确!B的对立事件既是CuB,A的对立事件既是CuA若A包含于B,有CuB包含于CuA,这个你画个图就很清楚了!

如果A,B对立,则A的余事件与B的余事件也对立吗?

也是对立的,A、B为对立事件一定满足P(A)+P(B)=1,所以A的余事件就是B,B的余事件就是A,还是对立的

什么是既互斥也对立事件

互斥事件:如果事件A与事件B互为互斥事件,则是指A与B不能同时发生对立事件:如果事件A与事件B互为对立事件,则是指A与B不能同时发生,并且其中必有一个发生也就是说,如果两个事件互为对立事件,他们肯定也

事件A与B是对立事件,或称为互补事件

读Aba(第四声)其实中间还可读出“一”,但通常省略.至于编辑就要用相应软件了,或者用word或ppt中的弄出来.MicrosoftOffice自带的公式编辑器,按照如下顺序添加该功能:看到菜单栏,点

对立事件AB,A-B=AB(上面横杠)

A-B={x|x属于A,且x不属于B}A∩(非B)={x|x属于A,且x属于非B}={x|x属于A,且x不属于B}所以A-B=A∩(非B)=AB(上面横杠)再问:我想问为什么再答:这不是根据定义证明了