AB=E怎么说明BA=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:55:17
AB=E怎么说明BA=E
线性代数书上的定义AB=BA=E.则AB互为逆矩阵.如果只写AB=E(或者BA=E) 能不能得出A是B的逆矩阵的结论?

当然能.假使A,B是同阶方阵,且满足AB=E.如果我们假设A的逆阵为C,则有AC=CA=E,由B=EB=(CA)B=C(AB)=CE=C,可知B=C,即B与C为同一矩阵,亦即B为A的逆阵,从而AB互为

证明:不存在任意n阶矩阵A,B,使得AB-BA=E

哪会有这样的证明题啊,不会是你自己闲着没事瞎想的吧这种题不就是取个例子就可以了吗?很简单啊,就取A=B=E,则AB-BA=0不等于E,不就完了吗?

已知矩阵E+AB可逆,求证E+BA也可逆

C=(E+AB)^(-1)(E-BCA)(E+BA)=E-BCA+BA-BCABA==E+B[-C+E-CAB]A=E+B[E-C(E+AB)]A=E==>E+BA可逆,且(E+BA)^(-1)=E-

矩阵AB=E,可以证明BA=E吗? 求证明..

因为AB=E所以|AB|=|A||B|=|E|=1≠0那么|A|≠0所以A可逆在AB=E两边分别左乘A^(-1),右乘AA^(-1)ABA=A^(-1)EA即BA=E再问:其实这是在定义AB=BA=E

逆矩阵中AB=BA=E,其中E具体是什么含义

一条对角线(左上到右下)是全是1,其他都为零,

线性代数 考研题证明:若E-AB可逆,证明|E-AB|=|E-BA|

再问:这怎么能想到啊再答:呵呵是不好想见多了就好了

已知在平行四边形ABCD中,AB=二分之一BC,AB至F,是BF=AB,在延长BA至E,是AE=BA,请你

你问的问题是:已知在平行四边形ABCD中,AB=1/2BC,延长AB至F,使BF=AB,再延长BA至E,使AE=BA,请你请你做做、、、、、、、?,不清楚

证明:不存在任何n阶矩阵A,B,使得AB-BA=E

直接计算Trace(AB-BA)=Trace(AB)-Trace(BA)=0,但Trace(E)=n.所以不存在这样的矩阵.至于杀鸡用牛刀的问题,我觉得,需要注意下面的一个事情.假设V是一个线性空间,

线性代数证明可逆已知E+AB可逆(其中E为单位矩阵),试证E+BA也可逆,且有[(E+BA)-1]=E-B*[(E+AB

只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E

A,B为n阶矩阵且A+B=E,证明AB=BA

A(A+B)=AA+AB(A+B)A=AA+BAAA+AB=A=AA+BA所以AB=BA

线性代数中可逆定义:若AB=BA=E,则A^-1 =B还有个推论:若AB=E(或BA=E),则A^-1 =B; (即我只

是充要条件.所以定义采用哪种,都是可以的.个人认为,本来的定义形式上更好看.反馈了所有信息

证明不可能有n阶方阵A,B满足AB-BA=E

要用到若尔当矩阵,你学过没?比较长,我要是打了,你能立即把分给我不?

如何证明矩阵可逆(A-E)BA*(-)=E 能说明矩阵A-E可逆,其逆矩阵为BA*(-)么?证明矩阵可逆是随便一个矩阵与

对于任何两个n阶方阵X和Y,只要XY=E就可以说明XY=YX=E(等价地,Y=X^{-1},X=Y^{-1}),不需要额外的条件了

怎样证明 不存在n阶方阵A,B 使得 AB-BA=E

取迹就可以了迹是对角线上所有元素的和而AB的迹与BA的迹是相同的,于是AB-BA的迹就是零,而E的迹是1+1+.+1=n明显的矛盾所以不存在n阶方阵A,B使得AB-BA=E

线性代数一道选择题设A,B均为n阶方阵,E+AB可逆,则E+BA也可逆,且(E+BA)^-1=(A) E+(A^-1)(

(C)E-B[(E+AB)^-1]A(E+BA)(E-B[(E+AB)^-1]A)=E+BA-(E+BA)B[(E+AB)^-1]A=E+BA-B(E+AB)[(E+AB)^-1]A=E+BA-BA=

证明可逆矩阵 AB=E或BA=E都要证明?

证明其中一个就可以了若AB=E则|A||B|=E所以|A|≠0,|B|≠0故A,B可逆且由AB=E,两边左端A^-1得B=A^-1两边右乘B^-1得A=B^-1

如图,△ABC中,AB=AC,D在BA的延长线上,E在AC上,且AD=AE,试说明:DE⊥BC

证明:延长DE交BC于F.因AB=AC,所以∠C+1/2∠BAC=90度.因∠BAC=∠DAE+∠EAD,AD=AE,所以∠DEA=1/2∠BAC,所以∠CEF=∠BAC,所以∠CEF+∠C=90度,

设A(A+B)=E,证明AB=BA

方法一、证明:因为AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA方法二、因为A(A+B)=AA+AB(A+B)A=AA+BA所以AA+AB=A=AA+BA即AB=BA再问:方法

试证不存在n阶方阵A、B满足AB-BA=E(E为单位矩阵)

由矩阵迹的性质知tr(AB-BA)=tr(AB)-tr(BA)=0,而tr(E)=n,两者不可能相等