abcd为正方形e在cd上,∠BAE为60度,求∠AEB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:31:28
解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三
证明:作一边为AD顶点为A 角度等于∠BAE的角 并交CD的延长线于M点 AE平分∠BAF所以 角BAE=∠EAF=MAD 另根据四边形A
延长DA至点G使AG=CF,连接BG,在△ABG和△CBF中,∵CF=AG∠C=∠BAGCB=AB,∴△ABG≌△CBF,∴∠BFC=∠BGA,∠CBF=∠ABG,∵BF平分∠CBE交CD于F,∴∠C
(2)个人感觉有点问题,DF的长为(0,1](3)DF=1/3,因为,△BEG为等腰△,只存在一种情况的,即BE=EG,画出图,根据相似三角形就可以求出的,
延长DC至E′,使CE′=AE连接BE′∴就有AE=CE′∴在△BAE、△BCE′中就有:BA=BC、∠BAE=BCE′=90°、AE=CE′∴△BAE≌△BCE′(SAS)∴∠ABE=∠CBE′又∵
延长CB使BM=DF连接AM△ADF≌△ABMAM=AF∠DAF=∠BAM∠DAF+∠BAF=90du3∠BAM+∠BAF=∠MAF=90°∠MAE+∠EAF=90°∠AEB+∠BAE=90°∠∠MA
解题思路:证全等,运用直角三角形斜边上的中线等于斜边的一半解题过程:不好意思,刚才吃饭了,答案发迟了,如图,连接AE,MD的延长线交AE于G,交AB于H∵M是AF的中点,N是EF的中点∴MN∥AE(三
延长EC至F'使CF'=AF,连BF'则容易证明两个直角三角形BAF和BCF'全等∠ABF=∠CBF'BF=BF'BE=BEEF'=EC+CF'=EC+AF=EF△FBE≌△F'BE∠EBF=∠EBF
如图,延长CB至G,使BG=DF∵AB=AD,∠ABG=∠D=90°∴△ABG≌△ADF∴∠BAG=∠DAF,AF=AG∵∠EAF=45°∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=45°∴△
如图,延长CB至G,使BG=DF∵AB=AD,∠ABG=∠D=90°∴△ABG≌△ADF∴∠BAG=∠DAF,AF=AG∵∠EAF=45°∴∠GAE=∠BAG+∠BAE &nbs
连FE交AB的延长线与G,因为BE=EC,角EBG和角ECF都是直角,易证三角形EBG全等于三角形ECF,即GE=EF,BG=CF,则AF=CF+BC=AB+BG=AG,三角形AFG是等腰三角形,又G
只要证明三角形ECF相似于三角形FDA就行了我记得是不是有个定理,对应边成比例,对应角相等的三角形就是相似三角形啊!因为EC=1/4BC,BC=CD=AD,DF=1/2CD所以,EC/FD=CF/AD
证明:延长DC,AE交于M,因为E为BC中点所以BE=CE又因为在正方形ABCD中,∠B=∠BCM,∠AEB=∠MEC,所以△ABE≌△MCE(ASA)所以AB=MC,因为AF=BC+CF所以AF=M
(我这个回答近仅限于选择题)用特殊值法,设这个正方形的边长为4,则BC长2,CE长2,CF长1,DF长3,在RT三角形ABE中,有勾股定理得AB的平方加BE的平方等于AE的平方等于20(当然也可以是根
证明:过中点E作EM∥AB,交AF于M.则AM=MF,且∠1=∠2=∠3.∴EM=AM=12AF∵EM=12(AB+CF),∴AF=AB+CF.
题错了,是∠EBF=45°不难,用旋转法,把某三角形绕着点B旋转
∵ABCD是正方形∴AB=BC,AB∥CD∴∠CFB=∠ABF将RT△BCF绕B旋转到BC和AB重合,得Rt△BCF≌△BAM∴∠CBF=∠ABM,∠BCF=∠BAM=90°,即M、A、E在一条直线上
过E作EG垂直AF于G.