ABCD是圆O上的四点AC垂直BDAB=2CD=4求半径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:38:12
ABCD是圆O上的四点AC垂直BDAB=2CD=4求半径
空间四边形ABCD中,EFGH分别是其四边上的点且四点共面AC平行平面EFGH,求证EF平行AC平行GH且.

证明:由于AC平行于EFGH且四点共面,推出AC//FHAC//EG推出FH//EGEF并不平行于AC

设A,B,C,D是半径为R的球面上的四点,且AB,AC,AD两两相互垂直,则△ABC,

答案选D首先,△ABC确定一个小圆,设其圆心H,半径为r,∠ABC=α,因为AB⊥AC,所以BC是小圆的直径,BC=2rAB=BCcosα=2rcosαAC=BCsinα=2rsinα连接AH并延长与

A,D,B,C是圆O上的四点,已知DA平分角EDC,求证:AB等于AC.

证明:过A作AF⊥BE于F,AG⊥CD于G.由∠FDA=∠ADG,且AD为公共边,知△ADF≌△ADG所以AF=AG.又因为∠ABF=∠ACG(圆上同一弦所对应的圆周角相等)且∠AFB=∠AGC=90

如图A,D,B,C是圆O上的四点,已知DA平分角EDC,求证:AB等于AC.

证明:∵DA平分∠EDC∴∠EDA=∠CDA∵∠EDA是圆内接四边形ACBD中∠ACB所对应的外角∴∠ACB=∠EDA∵∠CDA、∠ABC所对应圆弧都为劣弧AC∴∠ABC=∠CDA∴∠ACB=∠ABC

如图,过平行四边形abcd的对角线ac的中点,o作俩条互相垂直的直线,分别交ab,bc,cd,da于e,f,g,h四点,

四边形EFGH是菱形,理由如下∵ABCD是平行四边形∴AO=CO,AB‖CD,AD‖BC∴∠HAO=∠FCO∠EAO=∠GCO∴△HAO≌△FCO△EAO≌△GCO∴HO=FOEO=GO∵HF⊥EG∴

如图,ABCD四点都在圆O上,AD是圆O的直径,且AD=6cm若∠ABC=∠CAD,求弦AC的长

写的不太清除大体就是这样.先用同弧求出角度得等腰用圆心和半径得直角然后用勾股定理

如图 ,ABCD是圆O上的四点,AB=CD,三角形ABC与三角形DCB全等吗 为什么?(AC,BD不是圆的直径)

【全等】证明:∵AB=CD∴∠ACB=∠DBC【同圆内相等弦所对的圆周角相等】又∵∠BAC=∠CDB【同弦(或同弧)所对的圆周角相等】∴⊿ABC≌⊿DCB(AAS)

ABCD是圆O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长

因为A,B,C,D,四点都在圆上,所以,角ADB=角ACB,又因为AB=AC,角ABC=角ACB所以,角ADB=角ABC三角形ABE相似于三角形ADB,AB/AD=AE/ABAB^2=AD*AE=(2

正方形ABCD对角线交与点O,过点O做两条相互垂直的直线交正方形四边于E、F、G、H四点,求证四边形EFGH是一个正方形

证明:连接OC,OB则∠BOC=90°∵∠FOG=90°∴∠COF=∠BOG∵OB=OC,∠OBG=∠OCF=45°∴△OBG≌△OCF∴OG=OF同理OG=OF=OE=OH又∵FH⊥EG∴四边形EF

如图,四边形ABCD的四个顶点都在圆o上,AC垂直于BD与E,OF垂直AB与F,求证2OF=CD

你说的那个方法中“ABCD为等腰梯形”的推导步骤是不成立的. 如图,做OG⊥DC于点G,由于,圆心到弦的垂线平分该弦,并平分该弦对应的圆心角;同弧的圆心角是圆周角的两倍:OF⊥弦AB,所以∠

如图,AB是⊙O的直径,点C是圆O上异于A,B的任意一点,直线PA垂直于圆O所在平面,PA=2AC,AD垂直于PC

因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角

已知如图,四边形ABCD是矩形,对角线AC,BD相交于O,求证点ABCD在以O为圆心的圆上

证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A

在圆O中 AB、AC为互相垂直且相等的两条弦,OD垂直AB于D,OE垂直AC于E,求证四边形是ABCD正方形

因为OD垂直并平分AB,所以AD=AB/2因为OE垂直并平分AC,所以AE=AC/2AB=AC,所以AD=AE所以ADOE是正方形.(题目中ABCD写错了)

如图,四边形ABCD的顶点都在圆O上,且AC垂直BD于点E,点M为AB中点,ME的延长线交CD于点N,求证MN垂直CD

∵M为AB中点,∠AEB=90°∴BM=ME∴∠MBE=∠MEB=∠DEN由题意易得∠ADB=∠edn∴△ADB∽△NDE∴∠END=∠BAD=90°∴MN⊥CD

还有一道A卷题正方形ABCD中,点O是对角线AC的中点,P为对角线AC上一动点,过点P作PF垂直DC与点F.如图一,当点

如图,连接PD1.△APB≌△APD∴角PBC=角PDF又∵角PBC+角PEC=180角PEC+角PED=180∴角PEF=角PBC=角PDF∴△PFE≌△PDF∴DF=EF2.由正方形斜边与边的关系

已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,作AG垂直于BE于G ,AG交BD于点F.,求证:OE=

证明三角形CEB三角形BFA全等,可得BE=AF,再证明三角形AOF三角形BOE全等,所以OE=OF

已知正方形ABCD的对角线AC,BD相交于点O.E是AC上的一点,连结EB,过点A作AM垂直BE,垂足为M,AM交BD于

(1)连接ED,因为正方形对角线互相垂直平分,所以AC是BD的中垂线,所以DE=BE所以三角形BDE是等腰三角形,即角EBD=角EDB,又因为AC垂直BD,AM垂直BE所以角MAC=角EBD等于角ED

如图1,已知正方形ABCD的对角线AC、BD相较于点O,E是AC上一点,连接EB,过点A做AM垂直BE,锤足为M,AM交

⑴∠BAF=90º-∠ABE=∠EBCAB=∠BC∠ABF=∠BCE﹙=45º﹚∴⊿ABF≌⊿BCE﹙ASA﹚∴BF=CEOF=OB-BF=OC-CE=OE⑵CB延长交AF于N∠B