当k为何值时,齐次线性方程组2x1 kx2-x3=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:22:27
写出增广矩阵为11t41-12-4-1t1t²第2行减去第1行,第3行加上第1行~11t40-22-t-80t+1t+1t²+4方程有无穷多解,那么系数行列式一定为0,所以(t+1
|A|=|11t||1-12||-1t1||A|=|12t-2||100||-1t-13||A|=(-1)*|2t-2||t-13|A|=-[6-(t-1)(t-2)]=0,得t=4,-1.当t=-1
系数矩阵的行列式=11k1k1k11=-(k+2)(k-1)^2.所以,当k≠1且k≠-2时,方程组有唯一解.当k=1时,r(A)=r(A,b)=1
知识点:非齐次线性方程组的线性组合仍是其解的充要条件是组合系数之和等于1.非齐次线性方程组的线性组合是其导出组的解的充要条件是组合系数之和等于0.2+k-3=1,即k=2时,a是Ax=b的解.2+k-
这种不必费心去用性质,直接展开行列式即得:D=(1-λ)²(3-λ)-2+8-4(3-λ)+4(1-λ)-(1-λ)=(1-λ)²(3-λ)-(3-λ)=(3-λ)[(1-λ)
当k为何值时,方程2/3X-3k=5(x-k)+1(1)是正数?(2)是负数?(3)是0?2/3x-3k=5(x-k)+12x-9k=15(x-k)+32x-9k=15x-15k+32x-15x=-1
齐次线性方程组只有零解说明该方程组对应的行列式不为零或秩为满秩.再问:怎么解阿再答:把矩阵写出来,变换后得[k-1,0,0;0,1,0;0,0,k+1]行列式值为k^2-1,使其不等于零,得k不等于正
1-λ-2423-λ1111-λ齐次线性方程组有非零解R(A)
(t-1)x=(t-1)y=(t-1)z当t=1时,有非零实数解.
由方程变为1-x2423-x1111-x直接用乘法公式(1-x)*(3-x)*(1-x)+2*1*1+4*2*1-4*(3-x)*1-1*1*(1-x)-2*2*(1-x*)=0
1、y=(k-1)x成立条件:k-1≠0即k≠12、|k|的平方+k-2为一次函数的条件为|k|中k=-1、0、13、综合得出k=0或者-1
当λ为何值时,线性方程组有唯一解,无穷解,无解λX1+X2+X3=1X1+λX2+X3=λX1+X2+λX3=λ^2系数行列式|A|=(λ+2)(λ-1)^2.所以当λ≠1且λ≠-2时方程组有唯一解.
增广矩阵=10-1-101111a012235311br2-r1,r4-5r110-1-100122a012230366br3-r2,r4-32r210-1-100122a00003-a0000b-3
系数行列式=2λ1λ-1-12414=(1-λ)(4λ-9).而齐次线性方程组有非零解的充分必要条件是系数行列式等于0所以λ=1或λ=9/4.
3个方程3个未知量的齐次线性方程组有非零解的充分必要条件是系数行列式等于0系数行列式=1-1k1-k1k-11=(k+2)(k-1)^2所以k=1或k=-2.
系数行列式为0时,这个方程组有非零解.a(b-2b)-(1-1)+(2b-b)=0,即b(1-a)=0.故a=1,或b=0时此方程组有非零解.再问:为什么当系数行列式为0时,方程组有非零解啊再答:定理
因为是一元一次方程所以|k|=1,所以K=1或-1或|k|=0,k=0当k=1时,原方程为2x-x+1=0,x=-1当k=-1时,原方程为-3x-1=0,x=-1/3当k=0时,原方程为1-2x=0,
A=【a11b=【21a1211a】3-a】(1)当A得行列式不为零时,有唯一解,|A|=(a+2)(a-1)(a-1),此时只要a≠-2,1就可以了简单计算后两问:由(1)知道,无解,无穷多解只能在
增广矩阵=11k4-1k1k^21-12-4r1-r3,r2+r302k-280k-13k^2-41-12-4r2*2,r2-(k-1)r102k-2800(1+k)(4-k)2k(k-4)1-12-
a=1无穷多解a=0无解a=-1只有零解再问:�ܸ�һ�½���˼·����ϸ�����再答:�������д����������������͡��������=����������=nֻ����⡣С