当n趋于无穷时,如何证明n^n (n!)2趋于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:31:53
lim(n->∞)(1-1/n)^n=lim(n->∞){[1+1/(-n)]^(-n)}^(-1)=e^(-1)=1/elim(n->∞)(1-1/n)^(n^2)=lim(n->∞){[1+1/(
记a=1+b (b>0)a^n=(1+b)^n=1+nb+...+[n(n-1)...(n-k)]/(k+1)!*b^(k+1)+...b^n>[n(n-1)...(n-k)]/
这个应该对a分段讨论.当0
因为1<√(1+1/n)<1+1/n,不等式两边的极限均为1,所以由夹挤原理,√(1+1/n)的极限为1.
记A=(2n+1)!/(2n)!=(1/2)*(3/4)*...*(2n+1)/2n则00(n趋于无穷时).
y=(1+1/n²)^n两边同时取自然对数得:lny=nln(1+1/n²)=[ln(1+1/n²)]/(1/n)lim【n→∞】lny=lim【n→∞】[ln(1+1/
n!=n*(n-1).1=(n/2*.*1/2)*2^n,n趋于无穷大是2^n/n!=1/(n/2*.1/2)就是1/n型所以极限是0.
设a_n=(2n-1)!/(2n)!,显然a_n>0.a_(n+1)/a_n=(2n+1)/(2n+2)由其有下界0,故存在极限.实际上ln((2n)!/(2n-1)!)=ln(1+1)+ln(1+1
证明如下:(n!)/(n^n)=(n/n)*[(n-1)/n]*[(n-2)/n]*...1/nn趋于无穷时1/n趋于0..所以这个极限为0
|Xn|=+Xn或者-Xnlim|Xn|=0,肯定limXn=0
再问:方法1第一行的那个n>=4是怎么求出来的?要解方程n^3
(1+2^n+3^n)的1/n次方?记为an,则1+2^n+3^n>3^n,所以an>31+2^n+3^n<3×3^n,所以,an<3×3^(1/n)所以,an的极限是3
你题目很怪异,f(x)中没有x,是f(n)?3^n无界,所以你证明不对根据斯特林公式,n!=[根号(2pin)][(n/e)^n][e^(t/12n)]其中01,所以f(x)又f(x)>0,[3e/n
利用这个stirling公式n!sqrt(2πe)*(n/e)^(n)(n->+inf)很容易得到
我知道,n开n次方写成e的指数形式,然后指数是(1/n)*ln(n),求极限,罗比达法则ln(n)/n罗比达=1/n当n趋近正无穷,为0所以e的0次方为1
用word打给你看
上图了,答案是e注意sin(e) < e,所以lim[n→∞] [(sin(e))/e]^n = 0(sin(e))/e是个小于1的分数
将8从括号里提出来lim[n→∞](2^n+4^n+6^n+8^n)^(1/n)=lim[n→∞]8[(1/4)^n+(1/2)^n+(3/4)^n+1]^(1/n)=8(0+0+0+1)º