当x 0时,ln(x 1)~x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:48:51
当x 0时,ln(x 1)~x
证明函数的极限证明:当x0不为0时、1/x趋于1/x0(x趋于x0).(要求用e-€定义证明)

由|1/x-1/x0|=|(x-x0)/(x·x0)|=|(x-x0)|/|(x·x0|所以,对任意的e>0,只需要取d=min{|x0|²e/2,|x0|/2}则当0

f(x)在点x1处连续x趋近于x0时极限为F(x0),讨论当a取何值时分段函数f(x)=sinax/x,x≠0和f(x)

lim(x→0)f(x)=lim(x→0)sin(ax)/x=lim(x→0)ax/x=a(等价无穷小替换)因为lim(x→0)f(x)=f(0)所以a=3

设函数f(x)在x0处可导,则(f²(x)-f²(x0)/(x-x0)当x→x0时的极限

lim(f²(x)-f²(x0)/(x-x0)因式分解为:=lim(f(x)+f(x0))(f(x)-f(x0))/(x-x0)拆成两项=lim[(f(x)+f(x0)]*lim[

f(x)在x0处可导,且f'(x0)=2,则当x无限趋近于0时,[f(x0+x)-f(x0-3x)]/x=

[f(x0+x)-f(x0-3x)]/x=f(x0+x)/x-f(x0-3x)/x=f(x0+x)/x+3*f(x0-3x)/(-3x)=2+3*2=8主要是把方程给化简,需要仔细看书里极限的定义就很

当x趋于0+时,(ln tan7x)/(ln tan2x)的极限怎么求?

x趋于0则tan~x且lnx趋于无穷所以原式=limln7x/ln2x=lim(ln7+lnx)/(ln2+lnx)上下除以lnx=lim(ln7/lnx+1)/(ln2/lnx+1)=1

已知函数f(x)=x^2-4x+a+3,g(x0=mx+5-2m,当a=0时,对任意的x1∈[1,4],总存在x2∈[1

本题实质是求一个二次函数和一个一次函数在区间[1,4]内有解得问题当a=0时,f(x)=x^2-4x+3,g(x)=mx+5-2m即x^2-4x+3=mx+5-2m在[1,4]上有实数解的问题整理得h

ln(1-x),x0

首先f(0)=0f(-0)=0f(+0)=0所以在x=0连续且f(-0)=f(+0)f·(x)=1/(x-1)所以可导

在函数极限定义中,当x趋于x0时,为什么要强调x不等于x0,急,如果x等于x0会出现什么情况

郭敦顒回答:当x0为分母,x→x0时,x0≠0,则可进行分式计算,而分母等于0没有意义,就是不能计算之意.再则,x→x0这是相对的,而x=x0则是绝对的,在实际运用中的结果x→x0与x=x0是等同的,

当x趋于0时,ln(1+x)~x 为什么?

相似.可以等价替换在合适的情况下

lim x趋近于x0 x-x0分之ln根号下x-ln根号下x0的值得具体求法

(0/0型)用洛比达(L'Hospital)法则.上下一求导,再取极限就可得到:原式=1/(2x0)

当X>0时,证明ln(1+x)

当X>0时,证明ln(1+x)0时,1>1/(1+x)>0;(x的导数比ln(1+x)大,切一直都大于0)所以:ln(1+x)

已知函数f(x)=ex(次方)-ln(x+m),当m《=2时,证明f(x)>0.解答至f'(x)=0,得ex0=1/x0

在e^x0=1/(x0+2)两边取自然对数,左边=lne^x0=x0,右边=ln[1/(x0+2)]=ln(x0+2)^(-1)=(-1)*ln(x0+2)=-ln(x0+2),所以有x0=-ln(x

求极限:当X趋向无穷大时 [ln(2^x+3^x)]/[ln(3^x+4^x)]

结果为:ln3/ln4先用洛必达法则原式=lim[(ln2*2^x+ln33^x)/(2^x+3^x)]*[(3^x+4^x)/(ln3*3^x+ln4*4^x)]对于第一个[]里面分子分母同时除以3

定义在R上奇函数f(x),当x<0时的解析式为f(x)=-ln(-x)+x+2,若该函数有一零点为x0,且x0∈(n,n

设x>0,则-x<0,所以f(-x)=-lnx-x+2,因为函数为奇函数,所以f(-x)=-lnx-x+2=-f(x),所以f(x)=lnx+x-2.因为f(1)=ln1+1-2=-1<0,f(2)=

当x>0时,证明ln(1+1/x)

令t=1/x,则t>0,故既要证明ln(1+t)故令f(t)=ln(1+t)-t/√(1+t),t>0则f'(t)=1/(1+t)-1/√(1+t)+t/(1+t)^3/2=[2√(1+t)-2-t]

用极限定义证明当x趋近x0时,e^x的极限=e^x0

对任意ε>0(不妨设ε再问:为什么δ还要取小呢?直接取δ=ln(1+ε/e^x0)不行吗?再答:如果取δ=ln(1+ε/e^x0),那么当0

当x>0时,(1+x)ln(1+x)>x

构造函数f(x)=(x+1)㏑(x+1)-x.(x≥0).求导得f'(x)=㏑(x+1).∵x≥0.===>x+1≥1.===>㏑(x+1)≥0.即f'(x)≥0.∴在[0,+∞)上,f(x)递增.∴

求证当x>0时,x>ln(1+x)

设f(x)=e^x-(1+x)f(x)′=e^x-1∵x>0∴f(x)′>0∴f(x)在(0,∽)上单调递增∴f(x)>f(0)=1-(1+0)=0∴e^x-(1+x)>0∴e^x>(1+x)∴ln(

当x>0时,求证ln[(1+x)/x]

构造函数f(x)=ln(1+x)-x,x>0求导得f'(x)=1/(1+x)-1当x>0时,f'(x)再问:ln(1+x)<x怎么得到ln(1+t)<t再答:把x换成t就可以了,因为都是变量。ln(1