当x大于0时,1 xln(x 根号1 x的平方)大于根号下1 x的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:20:33
当x大于0时,1 xln(x 根号1 x的平方)大于根号下1 x的平方
证明;当x大于0时1+xln(x+根号1+x的平方)大于根号1+x的平方

再问:再问:拍照可以吧再答:采纳吧,你的题太多了,还是分开来问的好再问:第二题能看清吗

lim (x->0)[根号下(1+tanx)-根号下(1+sinx)]/xln(1+x)-x²

lim(√(1+tanx)-√(1+sinx))/(xln(1+x)-x^2)=lim(tanx-sinx)/(xln(1+x)-x^2)(√(1+tanx)+√(1+sinx))=(1/2)lim(

xln(x+根号1+x的平方)>根号1+x的平方 -1,(x>0)

设f(x)=xln[x+√(1+x²)]+1-√(1+x²),(x>0)f'(x)=ln[x+√(1+x²)]+x*[1+x/√(1+x²)]-x/√(1+x&

求极限X趋近于0+[Xln(1+3X)]/[(1-cos2x)^2]和X趋近于0 [根号(1+x)-三次根号(1+2x^

(1)只要注意到ln(1+x)~x(x→0),sinx~x(x→0),以及cos倍角公式:1-cos2x=2(sinx)^2容易知道极限趋向于+∞(2)只要知道(1+x)^a~ax(x→0)就容易知道

证明当x>0时,xln(x+根号下1+x^2)+1>根号下1+x^2

证明当x>0时,xln(x+√1+x^2)+1>√(1+x^2).【证明】设f(x)=1+xln[x+√(1+x^2)]-√(1+x^2),x>0,则f'(x)=ln[x+√(1+x^2)]+x[1+

当a大于0且x大于0时,因为(根号x-根号x分之根号a)的平方大于等于0,所以x-2根号a+x分之a大于等于0,从而x+

当a>0且x>0时,因为(√x-√a/√x)²≥0,所以x-2√a+a/x≥0,从而x+a/x≥2√a(当x=√a时取等号)这是是对的.

证明:当x大于0,1+1/2大于根号(1+x)

丢了一个x,逆推要证明只需证明1+x+x^2*1/4大于1+x(这里两边同时平方了一下)也就是证明x^2*1/4大于零,x大于零为已知x^2*1/4大于零所以x^2*1/4

帮忙证明不等式1+xln[x+根号(1+x^2)]>根号(1+x^2),x>0成立

设f(x)=1+xln[x+√(1+x^2)]-√(1+x^2),x>0,则f'(x)=ln[x+√(1+x^2)]+x[1+x/√(1+x^2)]/[x+√(1+x^2)]-x/√(1+x^2)=l

证明不等式当x>0,1+xln(x+√(1+x^2)>√(1+x^2)

利用求导公式很容易就可以证明,设f(x)=xln(x+√(1+x^2))-√(1+x^2)+1,对其求导,即可得出f'(x)=ln(x+√(1+x^2)),若x>0,那么f'(x)>0,另外可求出,f

当X大于1时,求证:2倍根号下X大于3减X分之一?

令y=2√x,y’=3-1/x大致做两条曲线(仅变化趋势)两直线交点是x=1处的点由此可证明

证明不等式当x>0时,1+xln(x+(1+x)^(1/2))>(1+x)^(1/2)二楼的方法很新颖。三楼为什么x→0

令y=(1+x)^(1/2);so:x=y^2-1;(y>1)f(y)=1+y^2*ln(y^2+y)-y;f'(y)=2y*ln(y^2+y)+y^2*(1/y^2+y)*(2y+1)-1=2y*l

当x趋近于0时,求lim1/xln(1+x+x^2+x^3)的极限

不懂请追问再问:1/x怎么体现出来?再答:这个是用洛必达法则,分子、分母同时求导!x求导为1不懂请追问希望能帮到你,望采纳!

当x趋于0时 f(x)=x-sinx与f(x)=xln(1-ax²)为等价无穷小,则a=

lim(x->0)(x-sinx)/[xln(1-ax²)]=lim(x->0)(x-sinx)/[x·(-ax²)]=-1/alim(x->0)(x-sinx)/[x³

求 [根号(1+tanx)-根号(1+sinx)]/[xln(1+x)-x平方]极限 x趋向0

lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx

已知f(x)=lnx+(1/x)(x>0),g(x)=lnx-x(x>0)求证当x>0时,xln(1+1/x)

只需证明x>0时1/(x+1)g(0)=0所以ln(1+t)>t/(1+t)1/x>0则ln(1+1/x)>x/1+x

证明:1+xln(x+根号(1+x^2))>根号(1+x^2)

定义f(x)=1+xln(x+√1+x^2)-√1+x^2则f'(x)=1+arshx注意ln(x+√1+x^2)=arshx以及(arshx)'=1/√1+x^2考虑到(arshx)'=1/√1+x

证明1+xln(x+根号(x^2+1)>=根号(x^2+1)

f(x)=1+xln[x+√(x^2+1)]-√(x^2+1)f'(x)=ln[x+√(x^2+1)]+x/√(x^2+1)-x/√(x^2+1)=ln[x+√(x^2+1)]f'(-x)=ln[-x