当x大于0时,1 xln(x 根号1 x的平方)大于根号下1 x的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:20:33
再问:再问:拍照可以吧再答:采纳吧,你的题太多了,还是分开来问的好再问:第二题能看清吗
lim(√(1+tanx)-√(1+sinx))/(xln(1+x)-x^2)=lim(tanx-sinx)/(xln(1+x)-x^2)(√(1+tanx)+√(1+sinx))=(1/2)lim(
设f(x)=xln[x+√(1+x²)]+1-√(1+x²),(x>0)f'(x)=ln[x+√(1+x²)]+x*[1+x/√(1+x²)]-x/√(1+x&
(1)只要注意到ln(1+x)~x(x→0),sinx~x(x→0),以及cos倍角公式:1-cos2x=2(sinx)^2容易知道极限趋向于+∞(2)只要知道(1+x)^a~ax(x→0)就容易知道
证明当x>0时,xln(x+√1+x^2)+1>√(1+x^2).【证明】设f(x)=1+xln[x+√(1+x^2)]-√(1+x^2),x>0,则f'(x)=ln[x+√(1+x^2)]+x[1+
当a>0且x>0时,因为(√x-√a/√x)²≥0,所以x-2√a+a/x≥0,从而x+a/x≥2√a(当x=√a时取等号)这是是对的.
丢了一个x,逆推要证明只需证明1+x+x^2*1/4大于1+x(这里两边同时平方了一下)也就是证明x^2*1/4大于零,x大于零为已知x^2*1/4大于零所以x^2*1/4
设f(x)=1+xln[x+√(1+x^2)]-√(1+x^2),x>0,则f'(x)=ln[x+√(1+x^2)]+x[1+x/√(1+x^2)]/[x+√(1+x^2)]-x/√(1+x^2)=l
利用求导公式很容易就可以证明,设f(x)=xln(x+√(1+x^2))-√(1+x^2)+1,对其求导,即可得出f'(x)=ln(x+√(1+x^2)),若x>0,那么f'(x)>0,另外可求出,f
令y=2√x,y’=3-1/x大致做两条曲线(仅变化趋势)两直线交点是x=1处的点由此可证明
令y=(1+x)^(1/2);so:x=y^2-1;(y>1)f(y)=1+y^2*ln(y^2+y)-y;f'(y)=2y*ln(y^2+y)+y^2*(1/y^2+y)*(2y+1)-1=2y*l
不懂请追问再问:1/x怎么体现出来?再答:这个是用洛必达法则,分子、分母同时求导!x求导为1不懂请追问希望能帮到你,望采纳!
lim(x->0)(x-sinx)/[xln(1-ax²)]=lim(x->0)(x-sinx)/[x·(-ax²)]=-1/alim(x->0)(x-sinx)/[x³
lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx
只需证明x>0时1/(x+1)g(0)=0所以ln(1+t)>t/(1+t)1/x>0则ln(1+1/x)>x/1+x
定义f(x)=1+xln(x+√1+x^2)-√1+x^2则f'(x)=1+arshx注意ln(x+√1+x^2)=arshx以及(arshx)'=1/√1+x^2考虑到(arshx)'=1/√1+x
f(x)=1+xln[x+√(x^2+1)]-√(x^2+1)f'(x)=ln[x+√(x^2+1)]+x/√(x^2+1)-x/√(x^2+1)=ln[x+√(x^2+1)]f'(-x)=ln[-x