当x趋近于0时,证明ln(x 1)约等于x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:48:35
首先x-1这一项不重要,因为x->0时它有极限为1.sin(x)和x是同阶无穷小,只要说明x*ln|x|趋向于0.可以直接用洛必达法则:limx*ln|x|=lim(ln|x|)'/(1/x)'=li
相当于算ln|x|/x注意到|x|^x当x趋于0是趋于1的所以得到答案再问:还是不懂,f(x)=ln|x|/|x-1|sinx和ln|x|/x有什么关系啊?要有关系也是和ln|x|/(x-1)有关系啊
lim(x→0+)x/(ln((e^x-1))(0/0)=lim(x→0+)(e^x-1)/e^x=0
运用洛必塔法则,等价无穷小求解再问:可以详细点吗方法我也懂再答:没有,我公式早忘完了,只是试着做了一下,反正就这两个法则,我是做不出来,嘿嘿
x趋近于0时,limf(x)=lim(1/x)/[-x^2)=lim(-x)=0再问:(⊙o⊙)…函数打错了,应为f(x)=(lnx)/x能求麽再答:我就这样做的呀?再问:可是我的参考书上利用这个函数
x趋近0时,limln(1+x)/x=1,所以就等价啊.
lim{x->0}ln(1+x)/x=lim{x->0}1/x×ln(1+x)=lim{x->0}ln(1+x)^{1/x}=ln[lim{x->0}(1+x)^{1/x}]=lne=1令e^x-1=
学了e的定义吗?e=lim(x->0)(x+1)^(1/x)或lim(x->∞)(1+1/x)^xlim(x->0)[ln(x+1)]/x=lim(x->0)(1/x)[ln(x+1)]=lim(x-
0/0型,洛必达法则分子求导=sin(sinx)*cosx分母求导=2x/(1+x²)所以=(1+x²)sin(sinx)*cosx/2x还是0/0型,洛必达法则分子求导=2xsi
lim{x->0}ln(1+2x)/x=lim{x->0}2x/x=2.
当x趋近于0时,ln(1+2xarcsinx)/tan^2x极限=lim(x->0)2xarcsinx/(x^2)=lim(x->0)2x^2/(x^2)=2
因为使用洛必达法则时你求导求错了(lntan7x)'=(1/tan7x)*(tan7x)'=(1/tan7x)*(sec²7x)*(7x)'=7(1/tan7x)*(sec²7x)
利用洛必达法则lim(x->0)(lntan7x)/(lntan2x)=lim(x->0)7sec²7x/tan7x/[2sec²2x/tan2x]=lim(x->0)(7/2)(
这是个1^∞ 型 可以变换 再用洛必达 (当然3楼的提示本质上就错了)见图 望采纳 谢谢
令arctanx=tlim(arctanx/x)=lim(t/tant)=lim(t/sint)*limcost=1所以arctanx~x
题目是ln(x+1)吧?
答案没有错!原式=lim(x->0){[e^x+1/(x-1)]/[1-1/(1+x²)]}(0/0型极限,应用罗比达法则)=lim(x->0){(1+x²)*[e^x+1/(x-
当x趋于0时,x+e^x趋于1,那么ln(x+e^x)也趋于0那么由洛必达法则可以知道,原极限=lim(x趋于0)[ln(x+e^x)]'/(x)'=lim(x趋于0)(1+e^x)/(x+e^x),
令y=n-ln(n)所以y´=1-1/n当n趋近于无穷大时1/n趋近于0所以y´=1-1/n>0所以函数y在(1,∞)上单调递增当n趋近于无穷大时y也趋近于无穷大所以1/y趋近于0