ab为圆o的直径,BC是圆o的弦,点P是圆外
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:49:50
所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\
你的问题呢问题是什么啊
先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线
很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
总体思路是证明三角形CBA相似于三角形DBC,连接AC,延长CO交圆于E点,连BE,因为角BCD+角BCE=角BCE+角ACE=90度;所以角BCD=角ACE;又由圆的性质知:角ACE=角ABE(同一
设∠BOC=θ,则∠DAB=θ,AD=10cosθ,OC=5/cosθ,AD+OC=10cosθ+5/cosθ>=2根号(10cosθ*5/cosθ)=10根号2,cos^2θ=1/2,cosθ=根号
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的
(1)连接AD,∠ADB=90°,则∠ADC=90°,因为BD=CD,AD=AD,据边角边定理,△ADC=△ADB,所以AB=AC;(2)连接OD,则即证DE⊥OD,因为OA=OD,所以∠OAD=∠O