ab为圆o的直径,pq经过圆o上的点t,ac垂直pq于c,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:48:30
连接:BE,则四边形ABED是圆内接四边形,所以:∠ADE+∠ABE=180°即∠ADE=180°-∠ABE所以:sin∠ADE=sin(180°-∠ABE)=-sin∠ABE而:∠AEB=90°,A
连结OP、OQ∵PM=OM∴∠P=∠AOP∴∠OMQ=∠P+∠AOP=2∠AOP∴∠BOQ=∠Q+∠OMQ=∠Q+2∠AOP∵OP=OQ∴∠Q=∠P=∠AOP∴∠BOQ=3∠AOP∴3弧AP=弧BQ
解两个方程得P(-1+sqrt(32/5-4m/5),2-1/2sqrt(32/5-4m/5))Q(-1-sqrt(32/5-4m/5),2+1/2sqrt(32/5-4m/5))OP与OQ垂直Px*
做出来啦!(1)∠BAT=∠BTP(弦切角)=90°-∠ATC(直径所对角为90°)=∠TAC故AT平分∠BAC(2)∠BAT=∠TAC∠TCA=∠BTA=90°故⊿TAC∽⊿BAT故AB=AT*AT
无论点M在圆内还是在圆外,都有:AB=CD. 证明如下:一、图1时, ∵∠AMP=∠CMP,∴∠BMQ=∠DMQ,∴MQ是∠BMD的平分线. ∵PQ是⊙O的直径,∴O在MQ上,∴点O到BM、DM
可以这样做.连接BD,连接OT角BD于M.因为AB是直径,所以角ADB是90度,而CT是圆的切线,所以OT垂直CT.这样,四边形CTMD的四个角都是90度,是矩形,所以DM=CT=根号3.因为OM垂直
1)证明:连接OT.OA=OT,则∠OAT=∠OTA; PQ切圆O于T,则OT⊥PQ;又AC⊥PQ,则OT‖AC,∠CAT=∠OTA. ∴∠CAT=∠OAT,即AT平分∠BAC.&
(1)证明:连接OT.∵OT=OA∴∠OTA=∠OAT∵PQ切圆O于T∴∠OTC=90°∵∠ACT=90°∴∠OTC+∠ACT=180°∴OT平行于AC,∠OTA=∠TAC∴∠TAC=∠OAT∴AT平
连OD,过O作AD的垂线,垂足交AD于E.AE=AD/2=1OE=TC=√3因为AC、OT分别垂直于TQ在直角三角形AEO中,AO是半径勾股定理:AO=√[(√3)^2+1^2]=2半径的长=2
想问什么呢?再问:1,试判断CD与圆O的关系,并说明理由2.若圆O的半径为3CM,AE=5CM,求角ADE的正玄值
连接PC,则三角形APC相似于三角形CPB.又有Q、O为AC、CB的中点,所以QPC和OPB相似.则角QPC和角OPB相等,即角QPO和角CPB相等为直角.所以PQ和圆O相切
连接OQ、PC因为BC是直径,所以角BPC=角APC=90度因为Q是AC中点,所以PQ=CQ因为OC=OP,OQ=OQ,所以三角形OCQ与OPQ全等,所以角OPQ=角OCQ=90度,所以PQ与圆相切
解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,
因为MN过圆心,且经过AB中点,所以MN垂直于AB,所以MN垂直于CD,所以MN与CD交于CD的中点,因此F为CD中点.因为MN垂直于AB和CD,所以M,N为狐AB,CD的中点,即狐AM=BM,CN=
证明连PA、PB∵AB是直径∴∠APB=90°∴∠APC+∠BPD=90°∵AC⊥CD,BD⊥CD∴∠APC+∠CAP=90°∴∠CAP=∠BPD∵P为半圆弧的中点
延长PO交圆于点C,由PM=MO得∠P=∠POM,由OP=OQ得∠P=∠Q∠BOC=∠POM=∠P∠QOC=∠P+∠Q=2∠P故∠BOQ=3∠P=3∠POA故3弧AP=弧BQ
连接OP,因为AB为直径,所以,∠BPA=90°=∠CPA,因为,Q为中点,所以,PQ=AQ=QC,所以,∠QAP=∠QPA,因为,OA=OP,所以,∠OAP=∠OPA,因为AC为切线,所以,∠OAQ
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的