ab为圆心o的直径,c为圆心o上一点,da和过点c的切线互相垂直,垂足为d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:30:42
/>∵AB为⊙O的直径,C为弧AD的中点,∴OC⊥AD(垂径定理的推论),∵∠BAD=20°,∴∠AOC=90°-∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO=(180°−∠AOC
因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B
1、证明:连接OC因为CD=BC,AO=BO所以OC是△BAD的中位线所以OC//AD,因为CE⊥AD所以CE⊥OC所以CE为圆心O的切线2、证明连接AC因为AB是直径,所以∠ACB=∠ACD=90°
连OC,因CD切圆O于C,故OC⊥CD,又AD⊥CD,∴AD‖OC,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO=∠DAC,即AC平分∠DAB.
(1)证明:连接OT.∵OT=OA∴∠OTA=∠OAT∵PQ切圆O于T∴∠OTC=90°∵∠ACT=90°∴∠OTC+∠ACT=180°∴OT平行于AC,∠OTA=∠TAC∴∠TAC=∠OAT∴AT平
答案CA应为延长线段AB至C,使BC=AB=aB没说弧半径
连DO∴∠DOC=∠ADO=∠DAO=∠COB又∵DO=BO,OC=OC∴△DOC≌△BOC∴∠ODC=∠OBC=90°∴DC是切线证毕
B延长PO交圆于H,延长CO交圆于E,角DCP=角PCE所以弧DP=弧PE=弧CH,所以CD平行HP,所以OP垂直AB,所以点P的位置不变或者多画几个就出来了
证明:∵OA=OB,CD⊥AB∴∠AOD=∠BOD(三线合一)∵OD=OD∴△AOD≌△BOD(SAS)∴AD=BD数学辅导团解答了你的提问,理解请及时采纳为最佳答案.
证明:连接AC,BC∵CD⊥AB,【垂直弦的直径平分弦,并平分该弦所对的两条弧】∴弧AC=弧AD∴∠ACD=∠ABC【同圆内,等弧所对的圆周角相等】∵OC=OB∴∠OCB=∠OBC=∠ACD∵∠DCP
∵PB是圆O切线,∴∠PBO=90°∵AD∥PO,∴∠ADO=∠DOP,∵OA=OD,∴∠A=∠ADO,∴∠A=∠DOP∵∠A=1/2弧BD,∠BOD=弧BD,∴∠A=1/2∠BOD,∴∠POD=1/
∠ACD=120°∠OCD=90°△ABC为直角三角形AB为直径∠ACB=90°∠ACO=∠ACD-∠ACB=30°∠BCD=30°∠CAB=∠ACO=30°∠D=180°-∠CAD-∠DCA=180
证明:连接AC,AB,BC,BD,过C,D作CQ,DN垂直AB于点Q,N.则PA^2=AQ*AB,PB^2=BN^AB,PA^2-PB^2=(PA+PB)(PA-PB)=(AQ-BN)AB,即:PA-
作OE⊥AB于点E则OE=10,OA=12.5根据勾股定理可得AE=7.5∴AB=2AE=15cm
过圆心O作弦AB的中垂线交AB于C,交圆周于D. 则OA=OB=5,BC=AB/2=2.5 &n
(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A
(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC
思路:欲证DE为切线,只需证明圆O的半径OD垂直DE即可.连接OD,AD,因为O为圆心,所以AO=BO,即AB=2BO.又因为DC=BD,所以BC=2BD.容易得出,△BOD~△BAC,从而OD//A
∵AB是直径∴AD⊥BD又DC=BD∴△ABC等腰(等腰三角形底边的中线与高重合)∴AB=AC再问:AB是圆心O的直径BD是圆心O的弦延长BD到C使DC=BD连结AC过点D作DE垂直AC垂足为E求证D