ab为椭圆x2 25 y2 16=1中心的弦,f1f2为焦点求s4bf2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:53:34
ab为椭圆x2 25 y2 16=1中心的弦,f1f2为焦点求s4bf2
已知椭圆C=x^2+4y^2=4 (1)过椭圆C的右焦点且斜率为1的直线,交椭圆于AB两点,求弦长AB

1、标准方程为:x^2/4+y^2=1,a=2,b=1,c=√3,右焦点F2(√3,0),直线方程为:y=x-√3,设A(x1,y1),B(x2,y2),代入椭圆方程,x62+4(x-√3)^2=4,

过椭圆x2/5+y2/4=1的右焦点作斜率为2的直线,交椭圆A,B两点,求弦AB的长

∵椭圆方程为x2/5+y2/4=1∴c=√(a^2-b^2)=√(5-4)=1∴椭圆的右焦点为(1,0)∴过椭圆右焦点的直线Lab可设为(题目已知直线斜率存在,否则要分别讨论斜率不存在(直线垂直x轴)

已知椭圆ax^2+by^2=1与直线x+y=1交于AB两点且绝对值AB中点M与椭圆中心O是连线为斜率=根号2/2,求椭圆

椭圆方程ax^2+by^2=1与直线方程x+y=1结合(a+b)x^2-2bx+b-1=0由根与系数关系得,x1+x2=2b/(a+b)y1+y2=2-(x1+x2)=2-2b/(a+b)所以M点为(

AB为椭圆X*2比a*2+Y*2比b*2=1左右顶点(1,3\2)为椭圆上一点椭圆的长半轴=焦距P(4,X)APBP与椭

过程不好传上来.也就是要证明点:点B到MN的中点的距离小于MN长度的一半.试试你能行的.

已知椭圆x²/16+y²/4=1,长轴右顶点,短轴上顶点分别为A,B,过AB中点P作一条直线,交椭圆

椭圆x²/16+y²/4=1①的长轴右顶点为A(4,0),短轴上顶点为B(0,2),AB的中点为P(2,1),过P的直线:y=k(x-2)+1,代入①,x^2+4(kx+1-2k)

已知斜率为1的直线经过椭圆x^2+4y^2=4的右焦点交椭圆于A B两点,求AB弦长?

/>椭圆方程为x^2+4y^2=4即x²/4+y²=1a=2,b=1,c=√3,∴右焦点F2(√3,0),∴直线方程为:y=x-√3,设A(x1,y1),B(x2,y2),将直线代

椭圆x2/4+y2/2=1的左右焦点分别为F1、F2,直线L过F2与椭圆相交于AB两点,O为坐标原点

椭圆x^2/4+Y2=1的右焦点F2为(√3,0),F1坐标为(-√3,0);依题意,直线的方程应为:y=(x-√3),代入椭圆方程得:x^2/4+(x-√3)2=1,5x^2-8√3x+8=0,则方

已知斜率为2的直线经过椭圆X^2/5+Y^2/4=1的右焦点F1,交椭圆于A、B,求弦长AB

X^2/5+Y^2/4=1的右焦点F1为(1,0)所以AB:Y=2X-2代入椭圆得:X^2/5+(2X-2)^2/4=1变形得:6X²-10X=0解得:X1=0,X2=5/3所以X2-X1=

椭圆mx2+ny2=1与直线x+y=1交于A、B两点,若AB=2√2,AB的中点C与椭圆中心连线的斜率为√2/2,求椭圆

设A点坐标(x1,y1),B点坐标(x2,y2)将x+y=1代入mx²+ny²=1,得(m+n)x²-2nx+n-1=0,(易知m,n>0)根据韦达定理有x1+x2=2n

过椭圆x^2/5+y^2/4=1的左焦点作一条斜率为2的直线与椭圆交于AB两点

椭圆焦点为F1(-1,0),F2(1,0),直线AB的方程为y=2(x-1),代入椭圆方程得x^2/5+(x-1)^2=1,化简得6x^2-10x=0,解得x1=0,x2=5/3,所以A(0,-2),

已知斜率为1的直线过椭圆x²/4+y²/3=1的左焦点,交椭圆于点A ,B,求AB长

解椭圆x²/4+y²/3=1即a²=4,b²=3即c=1即左焦点(-1.0)斜率为1的直线过椭圆x²/4+y²/3=1的左焦点的直线方程即y

已知椭圆4x^2+y^2=1,斜率为2的直线交椭圆于AB两点

解题思路:椭圆解题过程:见附件最终答案:略

AB为过椭圆x2/a+y2/b2=1的中心的弦,F1(c,0)为椭圆的焦点,则三角形F1AB的面积最大值

因为AB为过椭圆x2/a+y2/b2=1的中心的弦,F1(c,0)为椭圆的焦点,△F1AB面积最大所以A(0,b)B(0,-b)三角形F1AB的面积可表示为:1/2|AB|*|OF1|=1/2*2b*

已知椭圆Cx^2/9+y^2/8=1的左右两个焦点分别为F1F2,过F1作一直线交椭圆C于AB两点

1. 面积最大值为16/3.a=√9=3,b=√8=2√2,c=√(a²-b²)=1,故|F1F2|=2c=2.过F1的直线方程为:x+1=ay(这么设是为了顾及a=0即

高二椭圆题 F是椭圆X^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,AB是椭圆的两个顶点,椭圆的离心率为1/

设直线AB的方程为:y=x+m代入椭圆方程:x^2+3y^2=4得:x^2+3(x+m)^2=4整理,得:4x^2+6mx+3m^2-4-0由△>0得:-4/√3

已知椭圆x^2/45 + y^2/20=1的焦点分别为F1 F2过中心O作直线l与椭圆相交于AB两点,

可设直线为y=kx,代入A(x1,y1)B(x2,y2)椭圆方程中化简可得:(9k^2+4)x^2-180=0则x1+x2=0,x1x2=-180/(9k^2+4),所以|AB|=√(1+k^2)[(

过椭圆x^2/5+y^2=1的左焦点F1的倾斜角为45°的直线L交椭圆于AB两点的长度

椭圆x^2/5+y^2=1的左焦点F1(-2,0)倾斜角为45斜率为1所以直线L的方程为y=x+2带入方程得x²+5x²+20x+20=56x²+20x+15=0x1+x

如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点

解析:设另一焦点为D,∵Rt△ABC中,AB=AC=1,∴BC=2∵AC+AD=2a,AC+AB+BC=1+1+2=4a,∴a=2+24又∵AC=1,∴AD=22.在Rt△ACD中焦距CD=AC2+A

F1、F2为椭圆x225+y29=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB

由椭圆的定义得|AF1|+|AF2|=10|BF1|+|BF2|=10两式相加得|AB|+|AF2|+|BF2|=20,即|AB|+12=20,∴|AB|=8.故选B