ab均为n阶非零矩阵 ab=0ab的秩
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:24:43
R(A)和R(B)的秩都小于等于n,而AB是m*m的方阵,m>n,所以AB不是满秩阵,所以|AB|=0
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A
因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.
都小于n有个结论:设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足R(A)+R(B)=1,r(B)>=0所以R(A),R(B都小于n
证明:|A|=0即AX=0存在非零解那么若x1为AX=0的解向量,则利用x1,构成解矩阵B即可B=(x1,x2,…,xn),其中x1不等于0,x2=x3=…=xn=0而B为非零矩阵,即为所求
要是能够加一个条件就好了,就是至少一个是可逆的.比如假设A是个可逆矩阵,则r(A)=n,r(AB)=r(B),r(A+B)再问:这个问题确实有些难度,并没有更多的条件,在询问老师的时候,被以研究生考试
假设AB至少有一个可逆,不妨设A可逆则A^(-1)AB=A^(-1)0=0即B=0而B是非零矩阵,矛盾.
因为AB=0;所以B的列向量均是线性方程组AX=0的解,根据解空间的理论,r(A)+r(B)=n;又因为A、B均为非零矩阵,因此r(A)>=1;r(B)>=1;所以r(A)
证明:因为A,B可逆,故A^-1,B^-1存在,AB可逆,且有A*=|A|A^-1,B*=|B|B^-1.故(AB)*=|AB|(AB)^-1=|A||B|B^-1A^-1=(|B|B^-1)(|A|
应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)
这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3
不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3
AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]
n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较
此题用到多个知识点.因为AB=0,所以r(A)+r(B)=1,r(B)>=1,r(A*)>=1所以r(A)=1知r(A)=n-1或r(A)=n故r(A)=n-1所以r(B)
(B)正确(A+B)^T=A^T+B^T=B^T+A^T
这个很简单就是考定义(AB)的n次方=AB·AB·AB········AB(共乘以n次)∵AB=BA∴(AB)的n次方=ABABAB········AB=A·A·A·A······B·B·B·B·B·
因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)≤r(A)≤n,(1)当m>n时,r(AB)≤r(A)≤n<m,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(2)当m<n时,