AB垂直Ac,BD垂直cD,角1=角2,求证AE=DE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:38:24
ABC组成三角形,D在平面ABC外.过D做平面ABC的垂线,交于E.平面AED垂直平面ABC,平面CED垂直平面ABC.(同一平面的两条相交直线都垂直于另一个平面,这两个平面就相互垂直.)可知AE垂直
证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量
令向量AB=d,向量AC=c,向量AD=d则向量CD=AD-AC=d-c,BC=AC-AB=c-b,BD=AD-AB=d-b因为AB垂直CD,AD垂直BC所以AB点乘CD=0,即b点乘(d-c)=0,
证明:如图,∵AB⊥BD,ED⊥BD ∴∠B=∠D=90°
再答:或者这样也可以解:连结DB,AC,取DB中点O,连结OA,OC∵AB=AD∴OA⊥DB同理可证OC⊥DB又∵OA,OC属于平面OAC中∴DB⊥平面OAC又∵AC属于平面OAC中∴AC⊥BD再答:
连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD
作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD
过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A
因为两个三角形为直角三角形,所以角A+角ACB=90°,因为AC垂直于CE,所以角ACB+角DCE=90°,所以角A=角DCE.又因为角B=角D=90°,AB=CD,所以三角形ABC全等于三角形CDE
才再答:证明:∵CD⊥AB于D,BE⊥AC于E∴∠CEO=∠BDO=90°∵∠BOD=∠COE∵BD=CE∴△BOD≌△COE∴OD=OE又∵CD⊥AB于D,BE⊥AC于E∴AO平分∠BAC
做B点在面ACD上的射影,并延长交AC与B',因为AC⊥BD,所以AC⊥B'D.以B'作原点,以BD作X轴,以AC作Y轴,以通过B'⊥面ADC作Z轴,根据⊥CD,各点设未知数,表示出向量乘积为0,变形
证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC
证明:作AO垂直平面BCD,垂足为O,则CD垂直AO,有AB垂直CD,所以CD垂直平面ABO,故CD垂直BO.同理CO垂直BD.所以O为垂心,DO垂直BC.可得BC垂直平面ADO,所以AD垂直BC
连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD
过A作平面BCD的垂线,交平面于O则BO,CO,DO为AB,AC,AD在该平面上的射影.因为AB与CD垂直,AD与BC垂直根据三垂线定理得BO与CD垂直,DO与BC垂直又因为三角形三条高交于一点,因此
解题思路:证明三角形全等,根据全等三角形对应角相等,可解。解题过程:证明:∵BF垂直AC,CE垂直AB∴∠BED=∠CFD=90°∵BD=CD,∠BDE=∠CDF(对顶角相等)∴△BED≌△CFD∴D
因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度
因为CD垂直AB,所以角ADC=90度,角A=60度, &
作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD
延长DC,延长BA交于一点F.三角形acd为直角三角形,且角dac为六十度.所以af=2.bd=4因为角bac为一百二十度所以角cdb为六十度.bd=三分之四倍根号三.连接ad.ad=根号下三分之二十