AB是O的直径,C在O上,CD垂直AB,CD=4,AD=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:40:25
AB是O的直径,C在O上,CD垂直AB,CD=4,AD=2
已知AB是圆O的直径,AD垂直于CD,AC平分角DAB,点C在圆o上.(1)求证直线CD是圆O的切线

AC平分角DAB,可以得出角DAC=角CAB.又因为角ACB=90度,角CBA+角CAB=90上面两式可以知道:角CBA+角DAC=90又因为AD垂直于CD,所以角DCA+角DAC=90所以角CBA=

已知AB是圆O的直径,AD垂直于CD,AC平分角DAB,点C在圆o上.

先画出正确的图形.(1)连接OC,因为OA=OC,所以角OAC=角OCA,又AC平分角DAB,所以角DAC=角CAB,所以角DAC=角OCA,所以DA//OC,又AD垂直CD,所以OC垂直CD,即直线

如图,AB是半圆O的直径,点C在半圆O上,CD⊥AB于D,AB=9,DB=3.求CD的长.

/>连接AC、BC则∠ACB=90°∵CD⊥AB∴△BCD∽△CAD∴CD²=AD*BD=6*3=18∴CD=3根号2再问:如图,点A、B、C、D都在圆上,弧BD=弧DC,AD与BC相交于点

已知,AB是圆O的直径,点C、D在圆O上,OD//AC,求证弧CD=弧BD

连接OC因为OA=OC所以∠A=∠C因为OD//AC所以∠BOD=∠A(两直线平行,同位角相等)所以∠COD=∠C(两直线平行,内错角相等)所以∠BOD=∠COD所以弧BD=弧CD

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,DE

设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°

AB是圆O的直径,点P是AB延长线上的一点,PC切圆O于点C,在射线PA上截取PD=PC,连接CD并延长交与圆O于点E

连结EO、CO.∵PC切⊙O于C,∴∠PCO=90°,∴∠OCE=∠PCO-∠PCD=90°-∠PCD.∵PC=PD,∴∠PCD=∠PDC,∴∠OCE=90°-∠PDC.显然有:∠PDC=∠ODE,∴

如图,A,B,C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交园O于F,连接AE,BF.

证明:1、∵直径CE∴∠CAE=90∴∠ACE+∠AEC=90∵∠AEC、∠ABC所对应圆弧都为劣弧AC∴∠AEC=∠ABC∴∠ACE+∠ABC=90∵CD⊥AB∴∠BCF+∠ABC=90∴∠ACE=

A,B,C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交圆O于F,连接AE,BF.

1、∠ACE+∠AEC=90°∠DCB+∠ABC=90°∠AEC=∠ABC所以∠ACE=∠DCB又因为∠ACE=∠ACF+∠FCE∠DCB=∠BCE+∠ECF所以∠ACD=∠BCE2、因为∠ACE=∠

如图,A、B、C三点在圆O上,CE是圆O的直径,CD⊥AB于D,延长CD交圆O于F,连接AE、BF.求证:(1)∠ACD

1、∠ACE+∠AEC=90°∠DCB+∠ABC=90°∠AEC=∠ABC所以∠ACE=∠DCB又因为∠ACE=∠ACF+∠FCE∠DCB=∠BCE+∠ECF所以∠ACD=∠BCE2、因为∠ACE=∠

如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

如图,已知AB是圆O的直径,点D在AB的延长线上,且AC=CD,点C在圆O上,角CAB= 30度,求证:DC是圆O的切线

∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线

证明圆的切线AB是圆O的直径,点D在AB的延长线上,且BD=OB,点C在圆O上,角CAB=30度;证明CD是圆O的切线.

连结OC,则OC=r,(r为圆的半径),因为BD=OB所以OD=2×OC=2r利用余弦定理:cos30°=(CD^2+OD^2-OC^2)/(2×CD×OD)CD=2√3r这样一来,可以得到:CD^2

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,

(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

AB是圆O的直径,C是圆O上一点,CD垂直AB,垂足为D,CD=4,BD=2

三角形BCD为直角三角形,则BC=根号20;COSB=BD/BC=2/根号20;三角形ABC为直角三角形,COSB=BC/AB=根号20/AB=2/根号20;解得AB=10;半径R=AB/2=5AC=

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=