ab是圆o的弦 op垂直于oa交ab于点p

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:59:12
ab是圆o的弦 op垂直于oa交ab于点p
MN是圆O的直径,AB垂直MN于B,EC垂直OA交圆于C,CD垂直MN于D,连结ED.

有图吗?没图可能要分好多情况了过E做MN垂线交MN与P,EP/AB=OE/OA=OE/OC,由于∠CEO和∠CDO为直角可知CDOE共圆,∴∠OCE=∠EDP,所以OE/OC=EP/ED,代入第一个等

PA、PB是圆O的两条切线,A、B为切点,直线OP交圆O于点D、E,交AB于点C,已知PA=4,PD=2求半径OA的长?

由切线长定理:PA的平方=PD*PE4*4=2*PE所以:PE=8PE=PD+2R8=2+2R所以:R=3

初三圆 知识问题如图,AB是圆心O的直径,且AB=10,直线CD交圆心O与C、D两点,交AB于E,OP垂直CD与P,角P

连接OD在直角三角形OPD中,OD=1/2AB=5,OP=根号2,所以PD=根号(OD2-OP2)=根号23根据垂径定理,CD=2PD=2根号23有条件没有用到,你确定题没错吧.解法就这样.

已知圆O中两条半径OB垂直于OA,M为弦AB的中点,MC//OA,交弧AB于C,交OB于D,求证弧AC=1/3弧AB

如图:连结OC∵M是AB的中点  DC‖AO∴D是BO的中点∴DO=1/2BO∵CO=BO∴DO=1/2CO∵DC‖AO∴∠ODC=90°∵DO=1/2CO,∠ODC=90°∴∠D

如图,BD是圆O的直径,OA垂直OB M是劣弧AB上一点,过M做圆O的切线MP,交OA延长线于P MD叫OA于N 求证:

(2)设BC交OM于E,∵BD=4,OA=OB=1/2BD=2,∴PA=3,∴PO=5;∵BC‖MP,OM⊥MP,∴OM⊥BC,∴BE=1/2BC;∵∠BOM+∠MOP=90°,在直角三角形OMP中,

已知,点P是圆O外一点,连接PO交圆O于点C弦AB垂直OP于点D,若角DAC等于角CAP,求证:PA是圆O的切线

延长PO交圆0于点E,连接AE因为EC是圆O的直径所以角EAC=90度因为AD垂直EC所以角ADC=90度因为角ACD=角ECA所以角DAC=角EAO因为角DAC=角CAP所以角EAO=角CAP所以角

已知圆O中两条半径OB垂直于OA,M为弦AB的中点,MC//OA,交弧AB于C,交弧OB于D,求证弧AC=1/3弧AB

∠AOC=∠OCD(平行,内错角)而AM=BM故OD=DB=r/2=OC/2因此∠OCD=30∠BOC=90-30=60∠AOC=∠OCD=30=(1/3)∠AOC因此弧AC=(1/3)弧AB

如图所示是圆O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC平行于OA,交弧AB于点

延长CM交OB于点D,连接OC因为CD∥OA,M为中点,所以D为OB中点,且∠ODC=90°所以OD=OB/2=r/2,因为OC=r所以∠OCD=30°(rt△中,30°角所对的……)因为CD∥OA,

如图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2 OB,易证MEFC为矩形∴CF= 1/2 OB= 1/2 OC,∠C

OA是圆O的半径,以OA为直径的圆C与圆O的弦AB交于点D求证D是AB中点

证明:连接OD∵OA是直径∴∠ADO=90°∴OD⊥AB∴AD=BD∴D是AB的中点

如图,CD是圆O的弦CD上,过去P作PA垂直于OP交圆O于点A,

如图,连接OA,OC.∵点A是弧CD的中点,AO⊥CD,又∵CP=2cm,PD=8cm,∴CD=10cm,CM=5cm,根据勾股定理,设OC=r,OM=x,则r2-x2=25,①在△OPM中,OP2=

如图,已知PA、PB是圆O的两条切线,A、B为切点,连接OP交圆O于点D,交AB于点C,(1)证明:PO垂直平分AB

(1)三角形AOP全等于三角形BOP(斜边、直角边定理),故角AOP等于角BOP.三角形AOC全等于三角形BOC(边角边)故角ACO等于角BCO,边AC等于边BC.因两角和180,故垂直平分.(2)P

AB是圆O的一条弦,OA垂直OC,OC交AB于点P,PC=BC,求证:BC是圆O切线

OA=OB角A=角OBA又OA垂直OC所以角A+角OPA=90°所以角A+角CPB=90°又PC=BC所以角CPB=角CBP所以角OBA+角CBP=90°又B在圆O上所以BC为圆O的切线

OA和OB是圆O的两条互相垂直的半径,M是弦AB的中点,过M作MC‖OA,交弧AB于C,求证弧AC=1/3弧AB

证明:延长CM,交OB于点N,连接OC∵M是BA中点,MC‖OB∴N是OB的中点∴ON=1/2OB=1/2OC∵OB⊥OA∴∠C=30°∴∠BOC=60°∴∠AOC=30°∴弧BC=1/3弧BA

如图所示是⊙O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC∥OA,交AB于点C.求

证明:连结OC,延长CM交OB于D,如图,∵点M是弦AB的中点,MC∥OA,∴点D为OB的中点,∴OD=12OB=12OC,在Rt△OCD中,∠DOC=30°,∴∠AOC=30°,∴∠AOC=13∠A

图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C.

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2OB,易证MEFC为矩形∴CF=1/2OB=1/2OC,∠COF=30°,∴弧AC=1/3弧AB

BD的圆O的直径,OA垂直OB,M是劣弧AB弧上一点,过M点作圆O的切线MP交OA的延长线于P点,MD与OA交与N点.

1,∵PM是切线∴∠PMO=90°=∠PMN+∠DMO∵AO⊥BO∴∠ODM+∠OND=90°∵OM=OD∴∠OMD=∠ODM∵∠PNM=∠OND∴∠PMD=∠PNM∴PM=PN2,在直角三角形OPM

已知定圆的圆心是O,半径是r,圆内有一个定点A,OA=a,P是圆上的动点,过点A作AB垂直AP,交OP或其反向延长线于点

题目条件貌似有点少你可以设下未知量可以是P的坐标(r*cosθ,r*sinθ),学了极坐标三角函数应该也都知道了吧?θ是OP和OA的夹角,OA默认为x正半轴(这样θ的正负号也确定了)然后算出PA的线性