ab是圆o的直径 ,点c为圆o上一点,ae和过点c的切线互相垂直

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:06:56
ab是圆o的直径 ,点c为圆o上一点,ae和过点c的切线互相垂直
已知ab是圆o的直径 do垂直于ab于点o,cd是圆o切线,切点为c,求证角dce等于角dec

参考:如图所示,已知AB是圆O的直径,AP是圆O的切线,A是切点,BP与圆O交于点C,若D为AD中点,求证:直线CD是圆O的切线证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

如图,圆O的直径DF与弦AB交于点E,C为圆O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD,CD是圆O的切

24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C

如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.

证明:连接AG并延长交BC于D,连接PD,连接OG交AC于E则G是重心,∴E为AC中点,而AO=BO,∴OE//BC=>AG=GD,又AQ=QP,∴QG//PD=>QG//面PBC

已知圆O的半径为2,以圆O的弦AB为直径作圆M,点C是圆O优弧AB上的一个动点

连接AE所以AE垂直CB因为AB=2√3所以∠AOB=120°所以角C=60°在RT三角形AEC中CE/AC=cos60°=1/2(*)而三角形CED相似于三角形CAB所以DE/AB=CE/AC由(*

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的切线垂直,垂足为D

1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=

如图,AB是圆O的直径,射线BM垂直AB,垂足为B,点C为射线BM上的一个动点(C与B不重合),连结AC交圆O于D,过D

我只是想问一下“过D做圆O的切线交BC于E”这句话有什么用?你只要算出线段BC长度不大于2倍的线段DC就可以了.

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

如图所示,AB是圆O的直径,点C是弧AB的中点,D为圆O上一点,求角ADC的度数

已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9

如图,AB是圆O的直径 C为圆O上一点,AD和过C点的切线相交于点D

1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了

已知圆O的半径为6,AB是圆O的一条直径,C是直径AB上的一点,过点C作CD垂直AB,交圆O于点D,若CD等于三倍根号3

①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

如图,AB是圆O的直径,C为圆O上一点,BC交圆O于点D,EF切圆O于D且DE⊥AC于E求证 AB等于AC

楼主你是不是仪中的啊再问:是啊怎么了再答:metoo,我也不会做再问:啊哈啊哈啊哈额。。。。。。。。。。。再答:楼主你QQ可以告诉我吗,我的是860171926再问:为什么和你很熟吗再答:跟你对下试卷

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

已知PA垂直与平面ABC,AB是圆o的直径,C是圆o上的任一点

AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC

AB为圆O的直径,点C为圆O上的一点,AD垂直DC于点D,AC平分∠DAB 求证:DC是圆O的切线

不难,自己画下图,因为AC平分∠DAB,所以∠DAC=∠BAC,又OA=OC,所以∠CAO=∠OCA=∠DAC,就可以得出AD//OC,最后AD垂直DC于点D,所以OC垂直于CD.得出DC是圆O的切线

如图所示,AB是圆O的直径,C为圆O上一点,AD与过C点的圆O的切线互相垂直,垂足为DAC平分角BAD

(1)如图1,连接OC,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD+∠ADC=180°,∴AD∥OC,∴∠1=∠2,∵OA=OC,∴∠2=∠3,

AB是⊙O的直径 点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,

已知如图AB是⊙O的直径点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F已知如图AB是⊙O的直径点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.1.试说明DE=