AB是圆的直径,C是圆上一点延长BC至D,BC=CD,连接DA交圆于E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:49:01
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
AB是直径,P是OA上一点说明p在离A近的那段半径上所以PB>PA而C是圆O上一点连接CA,看三角形OAC是个直角三角形证明PC>PA
连结OC,∵OA,OB,OC都是圆的半径,∴△OAC和△OCB为等腰三角形;等腰△两底角相等,故有∠OAC=∠OCA,∠OBC=∠OCB;又∵三角形内角和为180°,∴∠ACB=∠OCA+∠OCB=9
①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
如图,以P点为圆心作2个圆,一个圆以PA为半径,由于其半径PA小于圆O的半径OA且2圆相切于点A,所以圆P内切于圆O,必然与PC相交与N,则PA=PN<PC一个圆以PB为半径,由于其半径PB大于
因为PA垂直圆O所在平面,所以PA⊥BC,又因为AB是直径,点C是圆上一点,所以AC⊥BC,所以BC垂直于平面PAC,所以面PAC垂直面PBC
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
已知:AB是圆O的直径,点C是弧AB的中点,∴弧AC是圆O弧长的4分之1,∠AOC=90°.根据圆的性质,1、同弧所对应的圆周角相等;2、同弧所对应的圆周角是圆心角的一半.∴∠ADC=∠AOC/2=9
证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(
延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠
第二问只能用公式tan2α=(2tanα)/(1-tan²α),算出来是1/3,抱歉,实在是不会用初中的方法.第三问由三角形BDE与三角形BAC相似列式,BD/AB=DE/AC,DE=4x/
①若C在OA上②若C在OB上设CO为X,则AC为6-x同理:CO=X=3在Rt△DCO中∵AO=r=6∴AC=AO+OC∴AC=A0+OC=3+6(3√3)²+x²=36=927+
证明:1)因为:AB是圆O的直径,C是圆O上的一点所以:∠ACB=90°所以:AC⊥BC因为:PA⊥平面ABC所以:PA⊥BC所以:BC⊥平面PAC所以:BC⊥PC即有:PC⊥BC2)因为:PA⊥平面
直线PC与平面ABC所成角=∠PCAAC=1/2ABPA=AB∠PAC=90所以tan∠PCA=2即直线PC与平面ABC所成角的正切值2希望能帮到你,祝学习进步O(∩_∩)O,也别忘了采纳!
连接OC,OC为半径=5,直径AB=10,C是圆上一点,CD⊥ABRt三角形COD中,OC^2=CD^2+OD^25^2=4^2+OD^2OD^2=9OD=3AD=AO+OD=5+3=8严格地讲,AD
1.因为AB是圆的直径,C为圆上一点,所以角ACB为直角,所以,BC垂直于AC;2.因为PA垂直于圆所在平面,所以PA垂直于BC;3.因为BC垂直于AC又垂直于BC,所以BC垂直于平面APC
连接CB,BD∵D⌒B=B⌒C∴A⌒C=A⌒D∴∠CBP=∠PBD∵∠CPB=∠DPB;∠CBP=∠PBDPB=PB∴△PCB≡(全等于)△PBD∴PC=PD
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A
1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F