AB是直径,AD是弦,过B点的切线BC与AD的延长线交于点C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:41:21
过O点作PA的平行线,交BD于E,很容易得到OE=AD/2=a/2.假设圆的半径为R,那么PO=√5R,BC=PB.OB/PO=2R/√5所以OC=√(OB^2-BC^2)=R/√5,PC=PO-OC
证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=
延长BD交圆于E,连接AE,因为pb是切线所以pb垂直ab,又因为它们长度相等,所以这是一个等腰直角三角形,角apb=45度.因为ab是直径,所以角e是直角,又因为bc垂直po,po平行于ae,所以三
PD=8AD/PD=S△ACB/S△CPB=2*S△COB/S△CPB(O为AB的中点)=2*OC/CP这里直角三角形PBO两条直角边的比是1:2,所以上面这个比求出来是1:4所以AD/PD=1/2,
过D作DE⊥AB垂足EDE=AE=2√2BE=4√2AB=6√2AP=12PD=PA-AD=8再问:BE=4√2是怎么来的?再答:∵PB=AB∴∠A=45°再问:我也知道啊,求不出来啊...BD不知道
(1)证明:连接OD,交AC于E,如图所示,∵AD=DC,∴OD⊥AC;又∵AC∥MN,∴OD⊥MN,所以MN是⊙O的切线.(2)设OE=x,因AB=10,所以OA=5,ED=5-x;又因AD=6,在
如图.设AB=2r.角C=角D.由于cosD=4/5,不妨设DE=4k,AD=5k,AE=3k,EB=2r-3k.由相交弦定理,AE*EB=DE*EC,得r=25k/6. k=6
AD=6,AB=10,三角形ADB为直角三角形,角D为直角故,BD=8AB*Dc=AD*BD,AD=6,AB=10,BD=8故Dc=4.8DF=2Dc故DF=9.6
连接AE,BD,过C作CF⊥AB,与AB交于F,∵AB是圆的直径,∴∠AEB=∠ADB=90°,∵∠AFC=90°,∴A,F,C,E四点共圆.∴BC•BE=BF•BA(1)同理可证F,B,D,C四点共
因为AB是圆O的直径,BC是圆O的切线,所以BC垂直于AB,角ABC=90度,困为AB是圆O的直径,点D在圆O上,所以角ADB是直角,BD垂直于AC,又因为AD=CD,所以BD是AC的垂直平分线,所以
45°因为AB是直径,所以角ADB=90°因为BC是切线,所以∠ABC=90°因为AD=CD,所以BD是AC的垂直平分线∠ABD=1/2∠ABC=45°
连接BD.BD垂直于AD,AD=CD,所以BD为三角形ABC的中线、高.又BC垂直于AB,所以ABC为等腰直角三角形.角DAB=45,则角ABD=90-45=45度
∵BC是圆O的切线,∴∠ABC=90°,又∵AD=CD,∴BD=1/2AC=AD(直角三角形斜边中线等于斜边的一半)∵AB是直径,∴∠ADB=90°,∴∠ABD=45°有疑问,请追问;若满意,请采纳,
连接BC交AD于F,角ACB为直角,BC平行于EG,所以只需证明F是AE的中点.因为CD是平行于AB的弦,所以角ABC=角BAD,所以AF=BF,又因为角FBE=角FEB,所以BF=EF.
DP=PE.证明如下:∵AB是⊙O的直径,BC是切线,∴AB⊥BC.∴DE∥BC,∴Rt△AEP∽Rt△ABC,得EPBC=AEAB.①又∵AD∥OC,∴∠DAE=∠COB,∴Rt△AED∽Rt△OB
连接BD∵AB⊥CD即∠AED=90°CD∥BF∴∠ABF=∠AED=90°∵AB是直径,(连接BD)∴BF的圆切线,∠ADB=∠BDC=90°∴∠FBD=∠C=30°∴在Rt△BDF中DF=1/2B
三角形PCD与PAB相似CD/AB=PD/PB=COS∠BPD, 选B
连接BC交AD于F,角ACB为直角,BC平行于EG,所以只需证明F是AE的中点.因为CD是平行于AB的弦,所以角ABC=角BAD,所以AF=BF,又因为角FBE=角FEB,所以BF=EF.
(1)证明:∵AB为⊙O的直径,∴∠BCA=90°,又∵BC∥OD,∴OE⊥AC,即:∠OEC=∠BCA=90°.(2分)又∵OA=OC,∴∠BAC=∠OCE,(3分)∴△COE∽△ABC;(4分)(
∵BC为⊙O的切线,∴AB⊥BC,∴∠ABC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,而AD=CD,∴△ABC为等腰直角三角形,∴BD平分∠ABC,∴∠ABD=45°.