径a的球体充满了均匀密度ρ的正电荷.然后,将半径为1 2的较小的球体雕刻
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:19:56
取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/(3
答案B卫星的运动周期卫星所受万有引力提供向心力GMm/R^2=m4π^2R/T^2M=4π^2R^3/GT^2地球体积V=4πR^3/3密度ρ=M/Vρ=3π/GT^2
1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即
GM/R^2*0.99=Gm/(R-r)^2G*3/4πR^3*密度/R^2*0.99=G*3/4π(R-r)^3*密度/(R-r)^2R*0.99=R-rr=64km如果光看结果的确蛮简单的,汗
ρ只和r有关,电荷分布是球对称的,所发出的电场线也是球对称分布的射线.做一与带电球同心,半径为r(r>R)的高斯球面,设球面上各点场强大小为E,根据高斯定理:E*4πr²=Q/ε解出球外的场
令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g=GMR2,由于地球的质量为:M=ρ43πR3,所以重力加速度的表达式可写成:g=GMR2=Gρ43πR3R2=43πGρR.根据题
应该选B.原因如下:根据高斯定理,两球外的电场分布是相同的,也就是说,再个球外面的的电场能量是相等的.但是,球面内部空间的电场为0,而均匀带电球体内部电场不为0(这个可以算,不难,先定性地说吧),所以
1.设未被挖时均匀带电球体在空腔所在位置处的场强,因为是均匀带点球体,直接采用高斯公式即可.2.再求出被挖去的球体在所求位置处的场强,同样利用高斯公式.3.将一和二求出的场强进行矢量相减即可得所求.
你只给出了西瓜皮的厚度d,没有西瓜的半径,假设西瓜的半径为D;1.西瓜瓤的体积v=3/4π(D-d)^3;西瓜的体积V=3/4πD^32.体积之比a=((D-d)/D)^3;3,大西瓜合算还是小西瓜合
解题思路:如下解题过程:指向上方指向下方最终答案:略
设某行星质量为M,半径为R,物体质量为m,万有引力充当向心力,则有;4π2mRT2=GMmR2M=ρV=4πR3ρ3联立解得T=3πρG故选:C
其实是用了圆盘的转动惯量公式J=1/2*m*r^2在本题就是I=∫1/2*r^2*dm而dm=pπr^2dz
剩下部分与m距离不变公式F=GmM/r^2=GMm/(R+R)^2求出原万有引力F也就是F=GMm/(R+R)^2F‘/F=M’/MM‘={4/3πR^3-4/3π【(1/2)R】^3}M根据比例式求