得bn=24n−3.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:02:35
得bn=24n−3.
bn=(n的平方+n)分之1 用裂项求和

n=(n的平方+n)分之1=1/n(n+1)=1/n-1/(1+n)Sn=(1-1/2)+(1/2-1/3)+...+(1//n-1/n+1)=1-1/(n+1)=n/(n+1)

数列{bn}通项公式为bn=1/n^2,求前n项和

这是尼曼函数的是指形式,可以知道当n趋于无穷时其直为π^2/6,但是没有通向...再问:那么如何证明它小于1再答:n^2>n(n-1)so1/n^2

两个等差数列{an},{bn},a1+a2+a3+...+an/b1+b2+b3+...+bn=7n+2/n+3. 则a

当an,bn各取前9项时a1+a2+a3+...+a9/b1+b2+b3+...+b9=7*9+2/9+3.=65/12a5,b5是等差中项a5/b5=a1+a2+a3+...+a9/b1+b2+b3

等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn

An=[2n/(3n+1)]BnAn-1=[2n/(3n+1)]Bn-1lim(n→∞)an/bn=lim(n→∞)[An-An-1]/[Bn-Bn-1]=lim(n→∞)[2n/(3n+1)][Bn

已知数列bn满足bn=b^2n,其前n项和为Tn,求(1-bn)/Tn

n=b^2n,Tn=b^2+b^4+b^6+……+b^2n=b^2n(1-b^2n)/(1-b^2)所以1-bn=1-b^2n所以(1-bn)/Tn=(1-b^2n)/{b^2(1-b^2n)/(1-

已知数列bn=n·3³,求{bn}的前n项和Tn

再问:bn为什么等于27n呢?求过程,谢谢再答:3的3次方是27,27乘以n是27n再问:不好意思,我打错了,bn=n·3的n次方再问:求解再答:你发了什么前面网卡了一下,没看到,能不能再发一次再问:

已知lim|b(n+1)/bn|=r 证明:lim n次方根|bn|=r

你好,请参见这个证明,几乎一摸一样.过程很复杂,打出来很费劲.http://wenku.baidu.com/link?url=Fhkr-yxP1pbSCQWKz3-1oo1RS6SKnwGJH3ERS

3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn

1.S(n)-S(n-1)=2(a(n)-a(n-1))=anan=2a(n-1)S1=2a1-4=a1====>a1=4,an=2的n+1次方2.bn+1=an+2bn=2bn+(2的n+1次方)左

bn=3/(36n^2-24n-5) Tn是数列bn的N项和,求使得T

n=3/(36n²-24n-5)=3/[(6n+q)(6n-5)]=(1/2)*[1/(6n-5)-1/(6n+1)]=(1/2)*{[1/(6+1)-1/(6n+1)]}Tn=b1+b2+

Bn=(2n-1)*[(4/5)的n次方] 证明Bn≤B5

由于bn=(2n-1)*[(4/5)^n]则:b(n+1)=[2(n+1)-1]*[(4/5)^(n+1)]=(2n+1)*[(4/5)^(n+1)]=[(8n+4)/5]*[(4/5)^n]则:b(

已知数列{an}满足a1=3,an+1−3an=3n(n∈N*),数列{bn}满足bn=an3n.

解(1)证明:由bn=an3n,得bn+1=an+13n+1,∴bn+1−bn=an+13n+1−an3n=13---------------------(2分)所以数列{bn}是等差数列,首项b1=

高一数学等差数列an,bn,An/Bn=7n+1/4n+27,

算错了.A2n-1/B2n-1=7(2n-1)+1/4(2N-1)+27=)(14n-6)/(8n+23)再问:带入的话。。。。。是148/111。选项是7/4,3/2,4/3,78/71好像还是月份

数列bn的前n项和为Tn,6Tn=(3n+1)bn+2,求bn

当n≥2时,有bn=Tn-T(n-1)所以由6Tn=(3n+1)bn+2得6T(n-1)=(3(n-1)+1)b(n-1)+2上两式相减得6(Tn-T(n-1)=(3n+1)bn-(3n-2)b(n-

已知数列{bn}=n(n+1),求数列{bn的前n项和Sn

n=n(n+1)=n^2+nSn=b1+b2+...+bn=(1^2+1)+(2^2+2)+...+(n^2+n)=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)

数列bn的通项公式为bn=2/n*(n-1),求bn的前n项和.

n=2/[n*(n-1)]=2*[1/(n-1)-1/n]当n=1时,b1不可能符合bn=2/[n*(n-1)]所以n>=2时,才有bn=2/[n*(n-1)]Sn=b1+b2+b3+……+b(n-1

bn=2/(n^2+n) 求证b1+b2+.+bn

n=2/(n^2+n)=2[1/n-1/(n+1)]b1+b2+.+bn=2(1-1/2+1/2-1/3+...1/n-1/(n+1))=2(1-1/(1+n))=2n/(n+1)因为n/(n+1)大

已知bn=4n^+4n,求{bn}的前n项和sn

平方和的公式为S=n(n+1)(2n+1)/6所以,Sn=4×n(n+1)(2n+1)/6+4×n(n+1)/2=2n(n+1)(2n+1)/3+2n(n+1)=2n(n+1)(2n+4)/3=4n(

已知bn=-3n+27,求{bn}的前n项和Sn最大值

1=24bn=-3n+27≥03n≤27n≤9当n=9时bn}的前n项和Sn值最大b9=-3*9+27=0sn=(b1+b9)*9/2=(24+0)*9/2=54

已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn

(1)a(n+1)-an=(n+1+2013)-(n+2013)=1∴b(n+1)-bn=cn/[a(n+1)-an]=cn=2^n+n∴bn-b(n-1)=2^(n-1)+n-1...b2-b1=2

等差数列{an},{bn},An/Bn=(7n+45)/(n+3),求an/bn为整数的n的值

根据数列求和公式Sn=(a1+an)*n/2An/Bn=[(a1+an)*n/2]/[(b1+bn)*n/2]=(a1+an)/(b1+bn)由等差数列有a1+an=2*a[(1+n)/2]这里方括号