微分方程(x ycosy x)dx-xcosy xdy=0的解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:12:40
微分方程(x ycosy x)dx-xcosy xdy=0的解
解这个微分方程 cos(x+y)dy=dx

令x+y=z,则dz/dx=1+dy/dx=1+1/cos(x+y)=1+1/cosz=(cosz+1)/cosz故cosz/(1+cosz)*dz=dx[1-1/(1+cosz)]dz=dx{1-1

求解微分方程 dy/dx-y=x*y^3

令u=y^(1-3)=y^(-2)du=-2y^(-3)dydy/dx-y=x*y^3dy/(y^3)dx-y^(-2)=x-0.5du/dx-u=xdu/dx+2u=-2x(e^(2x)u)'=-2

dy/dx=x*y 的微分方程

dy/y=xdx两边积分:ln|y|=x^2/2+Cy=Ce^(x^2/2)再问:ln|y|=x^2/2+C到y=Ce^(x^2/2)怎么转换再答:|y|=e^(x^2/2)*e^Cy=±e^C*e^

微分方程dy/dx=y/(x+y^2)的通解?

设t=x/y则x=tydx=tdy+ydtdy/dx=y/(x+y^2)=>dx/dy=x/y+y把dx代入t+ydt/dy=t+yydt/dy=ydt/dy=1t=y+C(C是常数)x=y^2+Cy

求微分方程 (x+y)dx+xdy=0 的通解.

(x+y)dx+xdy=xdx+(ydx+xdy)=xdx+d(xy)=0即d(xy)=-xdx两端求积分得,xy=-x^2/2+c所以,y=-x/2+c/x

微分方程dy/dx-3y=0的通解是

dy/y=3dx2端积分有:ln|y|=3x+c1y=+-e^(3x+c1)=+-e^c1*e^(3x)记c=+-e^c1的通解为y=c*e^(3x)

求微分方程dy/dx=-x/siny的解

dy/dx=-x/siny-sinydy=xdx两边取积分cosy=ln|x|+c再问:详细些再答:囧算错了-sinydy=xdxS-sinydy=Sxdxcosy=x^2/2+c再问:要一步一步来再

求微分方程 dy/dx=(x+y)^2

变换u=x+y,则y'=u'-1,方程化为u'-1=u^2,分离变量:du/(1+u^2)=dx,两边积分:arctanu=x+C,所以u=tan(x+C),所以y=tan(x+C)-x

求微分方程 dy/dx= 10^(x+y)

dy/dx=10^(x+y)dy/dx=10^x*10^ydy/10^y=10^xdx两边分别积分得ln10^y/ln10=10^x/ln10+Cln10^y=10^x+C10^y=e^(10^x+C

求微分方程dy/dx=(1+x)y的通解

分离变量法dy/y=(1+x)dx,两边积分,得ln|y|=x+x平方/2+C,整理得y=Ce的(x+x平方/2)方

求微分方程 dy/dx=(x+y)^2 ... 要过程.

令x+y=u则dy/dx=(du/dx)-1=u^2分离变量du/(1+u^2)=dx两边积分∫du/(1+u^2)=∫dx得arctanu=x+C得通解arctan(x+y)=x+C

求微分方程dy/dx=(x+y)/(x_y)的通解

dy/dx=(x+y)/(x-y)x+y=u,x-y=ty=(u-t)/2x=(u+t)/2dy/dx=(du+dt)/(du-dt)=u/tudu-udt=tdu+tdtudu-tdt=udt+td

微分方程 dy/dx=(-2x)/y

ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C

微分方程通解 dy/dx=e^(xy)

dy/dx=e^(xy)dy/e^y=e^xdx两边积分得-e^(-y)=e^x+C再问:你这样右边是e^(x+y)啊再答:噢令xy=p两边求导得y+xy'=p'y'=(p'-y)/x=(p'-p/x

求解微分方程dt/dx=x+y

直接积分就好了t=1/2*x^2+xy+c,c为常数

解微分方程 dy/dx=x-y

利用常数变易发公式:阿阿,我不知道怎么打出来--就是y=e的(对1求积分的负号),乘以(对x求积分再乘以e的[对1求积分]最后再加上常数C)整理得到x-1+C

求解微分方程dy/dx=ylny

变量分离dy/(ylny)=dxd(lny)/lny=dx(lny)^2/2=x+c

微分方程,tanx dy/dx=1+y

由已知得dy/(1+y)=dx/tanx两边求积分得到ln(1+y)=lnsinx+C1因此原微分方程的解是1+y=Csinx

微分方程(x+y)(dx-dy)=dx+dy的通解

两边同除以dx,整理后得到dy/dx=(x+y-1)/(x+y+1),然后转化一下,d(x+y)/dx=2(x+y)/(x+y+1).设u=x+y,得到du/dx=2u/(u+1).以下略.结果:x-