微分方程dy dx=x²-y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 10:32:07
解法一:∵y'=y/(y-x)==>(y-x)y'=y==>(y-x)dy=ydx==>ydy=ydx+xdy==>d(y²)=2d(xy)==>y²=2xy+C(C是积分常数)∴
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
dy/y=xdx两边积分:ln|y|=x^2/2+Cy=Ce^(x^2/2)再问:ln|y|=x^2/2+C到y=Ce^(x^2/2)怎么转换再答:|y|=e^(x^2/2)*e^Cy=±e^C*e^
y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算
ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C
e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2
1通解r^2+1=0C1*sinx+C2*cosx2特解1/(D^2+1)*sinx=Im(1/(D+i)/(D-i)*exp(ix))=Im(exp(ix)/2i/D*1=Im(x*exp(ix)/
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
直接积分就好了t=1/2*x^2+xy+c,c为常数
利用常数变易发公式:阿阿,我不知道怎么打出来--就是y=e的(对1求积分的负号),乘以(对x求积分再乘以e的[对1求积分]最后再加上常数C)整理得到x-1+C
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,
xy''=y'ln(y'/x)x(y''/y')=ln(y'/x)x(lny')'=lny'-lnxlny'=pxp'=p-lnxxdp=pdx-lnxdxp/x=udp=xdu+udxx^2du+x
楼上的答案完全正确.
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
这样解设y'=dy/dx=t,y''=d2y/dx2=dt/dx,带入得到t'(x+t^2)=t这样可以化成恰当方程dt=dx/t-x/t^2*dt=d(x/t)解得y'=t=(自己会算吧~)再积分一
y''=xy'=x²/2+c1y=x³/6+c1x+c2
y'cosy=x-siny;设p=siny;p'+p=x;Pe^x=xe^x-e^x+C
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).