微积分xe的-x次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:05:36
y=e^x的导数y'=e^xy=e^(x^2)的导数y'=e^(x^2)*(x^2)'=2xe^(x^2)故y=xe^(x^2)的导数是:y'=x'*e^(x^2)+x*[e^(x^2)]'=e^(x
∫xlnxdx(1→e)=½∫lnxdx²(1→e)=½x²lnx(1→e)-½∫x²dlnx(1→e)=½e&s
不知道题目有没有被理解错.
(x+1)e^x是
∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)*e^x+C所以定积分=(π/2-1)*e^(π/2)-(-1)*e^0=(π/2-1)*e^(π/2)+1
前一个题目两边同时求导,也太简单了.第二个设y=x^5+x-1dy=5x^4+1,全域恒正,所以Y单调递增(R上的单调函数),由于X=0时Y=-1,x=1时y>0,所以,根据连续函数零值定理,在X=0
∫xe的x次方dx的积分=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+c再问:^是个什么意思啊再答:e^x即为e的x次方
∫f(x)dx=xe^x+c求导f(x)=e^x+xe^x=(x+1)e^x选D
用分部积分法积分号xe(-x)dx=-xe^(-x)-积分号[-e^(-x)]dx=-xe^(-x)-e^(-x)+c=-e^(-x)(x+1)+c
采用分部积分:∫(-∞,0)xe^xdx=∫(-∞,0)xde^x=xe^x(-∞,0)-∫(-∞,0)e^xdx=(xe^x-e^x)(-∞,0)=-1
追问:不对啊第一步就不对那个x上哪了?回答:不好意思,打错了应该是:∫(xe^x)/(1+x^2)dx=(1/2)*∫e^xd(1+x^2)=.追问:也不对啊分母那个(1+x^2)呢回答:脑袋不够用了
∫(2→4)xe^(-x²)dx=∫(2→4)e^(-x²)d(x²/2)、凑微分=(1/2)∫(2→4)e^(-x²)d(x²)、把常数项提出=(1
∫xe^(-3x)dx=(-1/3)xe^-3x+(1/3)∫e^(-3x)dx=(-1/3)xe^(-3x)-(1/9)e^(-3x)=[-e^-3x)/9](3x+1)∫[0,1]xe^(-3x)
∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2
因为(a^x)'=a^x*lna所以[10^(-x)]'=10^(-x)*ln10*(-x)'=-10^(-x)*ln10=-[1/(10^x)]ln10,(a^xe^x)'=[(ae)^x]'=[(
因为e^x=1+x+x平方/2!+x立方/3!+.+x^(n-1)/(n-1)!+x^n/n!+.所以f(x)=xe^x=x(1+x+x平方/2!+x立方/3!+.+x^(n-1)/(n-1)!+x^
典型的二阶常系数线性微分方程,利用特征方程进行求解.解特征方程:λ^2-2λ-3=0得:λ1=-1、λ2=3.因此方程的通解为:y=C1*e^(-x)+C2*e^(3x)+g(x)其中g(x)为一个特
y-xe^y+x=0两边求导:y'-e^y-xe^y*y'+1=0【(xe^y)'=x'(e^y)+x*(e^y)'=e^y+xe^y*y'】(1-xe^y)y'=e^y-1y'=(e^y-1)/(1